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1.0 INTRODUCTION

The past decade has seen a steady increase in the degree of orientation pre-
cision required by space missions., This growth in precision will continue during
the Seventies, leading to a significant number of spacecraft payloads reguiring
attitude determination and control accuracies in the one-to-ten arcsecond region.

In response to this projected requirement, TRW Systems and NASA/Goddard Space Flight
Center have pursued development of the requisite technology through the Precision
Pointing Control System (PPCS) program under Contract NAS5-21111.

The Precision Painting Control System (PPCS) is an integrated system for
precision attitude determination and orientation of gimbaled experiment platforms.
The PPCS concept developed within NASA [1 ] configures the system to perform
orientation of up to six independent gimbaled experiment platforms to design goal
accuracy of 0.001 degrees (lo, per axis). This system operates in conjunction with
a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude
{200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life
of 3 to 5 years.

Characteristic of such a system are two complementary functions, namely:

¢ Attitude Determination - the attitude of a defined set of body-fixed

reference axes is determined relative to a known set of reference
axes (generally) fixed in inertial space.

¢ Pointing Control - gimbal orientation is controlled open-loop
(without use of payload error/feedback) with respect to a defined
set of body-fixed reference axes to produce pointing to a desired
target.

This functional dichotomy is noted, in that the pointing function may be quite
mission dependent while development of a precision attitude determination approach
will have more universal applicability.

The requiremenis for PPCS are designed primarily to support the scientific/
experimenter user community. Action was thus taken during the study to have a ques-
tionnaire broadly distributed to this user community describing the precision atti-
tude determination and pointing control concept being studied and seeking responses
designed to identify potential users. Distribution was made in October 1970 to 168
members of the scientific and engineering community and over 50 replies have been
received. The prepared package and a summary of the replies are given in Appendix A.

The main points observed include:
® Most applications call for three-axis stabilization.

o Orbits range from low altitude to highly eccentric to geosynchronous
to interplanetary.

1-1



s A variety of projected applications require arcsec
performance levels.

e Most applications specify both pointing control and attitude
determination.

Typical of the projected applications are the following mission-related
examples:

o On-board precision attitude determination and control is required
for successful operation of a spacecraft payload. An example is
the use of PPCS to command point a precision gimbaled payload (e.g.,
a very high resolution camera) in the absence of a payload-developed
error signal (i.e., no autotracking capability).

® On-board precision attitude data is required to augment the opera-
tional utility of the spacecraft payload equipment. For instance,
PPCS data can be used to point a tracking payload (e.g., a large
space telescope)to within the acquisition field of its internal
boresight tracker, thus eliminating acquisition/search require- .
ments. oo T T T

e Off-line precision attitude data is required to support operational
payload data evaluation and utilization. An obvious example is
the use of PPCS data to simplify evaluation of data from a line
scanning device {e.g., a wide angle high-resolution radiometer
with a Tong exposure time); the alternative, reconstruction using
Tandmark data and sophisticated software, may represent a signi-
ficant cost and operational disadvantage.

As noted, the application of precision attitude determination and control
will vary from mission to mission; nonetheless, a single system can be designed such
that essential elements meet virtually all requjrements without compromise. By
recognizing the varied requirements, PPCS has been configured modularly to make best
advantage of the ultimate usage. Further, the system desigh approach has been made
applicable to an even broader range of missions, orbits, and spacecraft configurations
than had originally been considered.

This report documents the PPCS design and development program. This program is
directed toward developing system concepts, hardware and software designs capable of
the required performance, and verification of performance through simulation and, in
some cases, through test. Development activities are outlined as follows:

® A complete system design capable of meeting all PPCS objectives

was defined. Analyses sufficient to demonstrate feasibility of
the design were performed.

e FEach hardware element (except gyros and computer) was defined to
the point where further development requires engineering model
fabrication.

o Software associated with attitude determination and experiment
pointing was developed. Other software elements were defined
conceptually.



e The system, and related hardware and software, was studied
through simulation of attitude determination and pointing
control and by error analysis.

® The star tracker was built and tested.

This report is the final design report and, as appropriate, incorporates work docu-
mented earlier [2-5 ]. Initially presented is a summary of the overall PPCS system
and the key design considerations. Detailed system design is described through the
functional and operational characteristics of the system, design definition and re-
quirements allocation for system hardware, and definition of system interfaces. The
system analysis details the overall development of the system equations, error
analysis, reliability analysis, and observability analysis. Design and performance
analysis documents the analysis and simulation efforts which are keyed to more
specific performance and design considerations, The work and results discussed
make extensive use of the comprehensive attitude determination and pointing simu-
lations developed for PPCS [ 6-11]. This is followed by an extensive development
of each of the hardware assemblies and software, keyed toward the appropriate
functional designs. Detailed PPCS engineering model hardware design is documented
elsewhere [ 127. '



2.0 SUMMARY

The preliminary design of a Precision Pointing Control System (PPCS) has been
developed. This design provides the capability to achieve precision on-board atti-
tude determination and pointing control of multiple gimbaled platforms independently
mounted on a carrier spacecraft. The system performs four basic functions, namely:

¢ Attitude Determination - establish celestial/inertial orientation
e Alignment Reference - measure non-integral reference alignment

e Experiment Pointing - command point (open-loop) gimbal mounted
experiments

¢ Antenna Pointing - command point (or autotrack) antenna gimbal.

2.1 SYSTEM DESIGN

PPCS hardware and software elements are shown in Figure 2-1. For attitude
determination, gyros are utilized to maintain inertial attitude and a gimbaled star
tracker provides the source of periodic attitude updates. Alignment reference is
provided by three-axis autocollimator measurements. A stable mechanical reference
is provided for integral mounting of the star tracker(s), gyros, and autocollimators.
Experiment pointing is achieved with a precision three-axis gimbal system; antenna
pointing with an accurate two-axis gimbal system. The software required for imple-
menting these functions in PPCS is summarized, where the processing is accomplished
using an on-board computer whose interface to the sensors and actuators is through
a data bus.

The system has the capability of providing one-sigma gimbal pointing accuracies
in each axis of better than 0.001 degree (3.6 §EE} and three-axis attitude deter-
mination errors of less than 4 sec (lo}. Error growth between star tracker attitude
updates is characteristic due to errors in propagating attitude using the gyros. The
use of the gimbaled star tracker provides capability to minimize the effects of this
error by selection of the period between updates. Important systematic errors are
observable and are compensated for within the system, providing performance 1imited
only by the dynamic (random) error sources. The PPCS system error budget is shown
in Figure 2-2. The accuracies achievable with the developed hardware and software
designs meet or exceed these budget requirements in ail cases,

PPCS hardware assemblies are configured in modular form to take advantage of a
partitioned standby redundancy approach using lower failure rate sub-elements to
achieve 3 to 5 year life. Thus a flexible configuration results with elements which
can, in most cases, be completely cross-strapped with multiple redundancy. With
this in mind, PPCS assembly power, weight, and size are shown in Table 2-1. The
assemblies as shown, except for the computer and dataz interface, represent non-redun-
dant ("Simpliex") units. For such a "simplex" system, the attitude determination

2-1



REFERENCE BLOCK ; PPCS FLIGHT SOFTWARE
ASSEMBLY EXECUTIVE 1700
ATTITUDE REFERENCE 2120
POINTING CONTROL 775 EXF;EIRMI é\’lAEFT
SUBROUTINES 375
DIGITAL EXPERIMENT
COMPUTER e ELECTRONICS
ASSEMBLY ASSEMBLY
i
SENSOR ELECTRONICS T l
ASSEMBLY ——
DATA - ANTENNA
ASSEMBLY lgo ] ASSEMBLY
GYRO REFERENCE -
ASSEMBLY l T

ANTENNA GIMBAL ASSEMBLY

JE“_

[A LIGNMENT SENSOR ASSEMBLY]
i

Figure 2-1, PPCS System Block Diagram
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PPCS

3.6 sec
SENSORS DATA PROCESSING ACTUATORS
2.65 sec 1.56 Sec 1.58 sec
STA SEA GRA RBA ASA EGA EEA
1.3 sec 0.5 sec 1.5 Sec 0.5 §ec 1.6 Sec 1.5 Sec .5 Sec
* ALL ERRORS ARE SINGLE-AXIS, 1o
3.6 sec = 0.001 deg
Figure 2-2. PPCS System Error Budget




Table 2-1.

Summary of PPCS Hardware Characteristics

Size (ea)}

Assembly Weight (ea) Power (ea)
Star Tracker 39 22x16x17 17
Sensor Electronics 6 8x11x6 15
Gyrc Reference (TRIAD) 9 6X6X5 15{Unheated )
Alignment Sensor 28 (2} 5x5x10 7.5
‘Reference Block Spacecraft/Configuration Dependeht (36-120 Tbs). --
Experiment Gimbal 75 33x27x28 30
Experiment Electronics "M - - -8xlexe - - -1 -200 -
Antenna Gimbal 15 12x5x7 2
Antenna Electronics 2 3x8x6 6
Digital Computer® 32 8x17x6 28
Data Interface * 8 Bx6xb 10

* Internally redundant.



function {excluding computer and reference block) requires 54 pounds and 47 watts.
Each experiment utilized (simplex, including alignment sensor) requires an additional
114 pounds and 58 watts. Additional redundancy is added as appropriate (using modular
sub-elements} to achieve pdrticular reliability goals.
2.2 DESIGN DEVELOPMENT HIGHLIGHTS

This section highlights the important design considerations and tradecffs with
respect to system configuration, hardware implementation, and software/algorithm
design. The key decision made in configuring the system is, of course, the selection
of a gimbaled star tracker. This choice follows directly from basic system objectives
namely: development of a system design which will accommodate the full range of orbit
from Tow altitude sun synchronous to geosynchronous, and beyond. Selection of the
gimbaled tracker offers an additional advantage - a system which can operate aboard
fully stabilized spececraft whose attitude reference is either earth-oriented, sun-
oriented, or inertial. Although PPCS is only required tc operate on a three-axis
stabilized earth pointing vehicle, the additional capability is of importance because
of the potential varied missions to which PPCS may have application. It is noted
that a system using star mappers on a low altitude earth-oriented spacecraft has
been developed [13,14]. However, restrictions are placed upon the inertial motion
{and hence altitude in earth-stabilized applications) of the carrier spacecraft.

Detailed design tradeoffs associated with specific elements of the system are
described in the following sections. However, it is worth commenting briefly on the
overall approach to mission versatility (modularity) and redundancy management to
obtain mission lifetimes on the order of 3 to 5 years. PPCS is characterized by
stringent performance goals and multiple functions which are necessarily complex.
Traditional redundancy approaches have been to dupiicate hardware at the assembly
level, using the first unit until failure and then switching to the second. With
complex assemblies, sometimes a third or fourth unit must be added to achieve the
required reliability. This approach is not efficient in that reliability increase
per pound {or dollar) of added hardware is low. The PPCS approach implements re-
dundancy within assemblies at a functional level, achieving simple interfaces
between redundant units and high reliability growth per pound {or dollar) of added
hardware.

The functional redundancy approach has the added advantage of permitting great
flexibility in tailoring a basic design to a particular reliability requirement. This
is particularly important in electronic assemblies whose reliability requirements vary
with mission and application. Similarly, mission versatility is achieved through
modularity of hardware and software elements, thus providing considerable configura-
tion freedom.

2.2.1 Star Tracker and Electronics

A gimbaled star tracker was developed which provides measurement to accuracies
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on the order of 1 sec. The tracker consists of a telescope/sensor mounted within a
two-degree-of-freedom gimbal set of unique design. The choice of detector was a
basic decision having considerable impact on the ultimate tracker configuration and
performance. Available choices considered include image dissector tubes, photomulti-
plier tubes {smaller version of dissector), and solid state detectors. Early studies
showed that each could provide the required sensitivity with similar signal to noise
ratios. However, solid state detectors did not have a history of space flight to
demonstrate their performance. On the other hand, considerable successful flight
history exists for image dissector type detectors (notably OAO). On this basis, a
tube detector was selected.

To achieve ultimate accuracy, it seemed obvious that null operation of the
detector was best. Early studies {later confirmed by tracker tests) indicated that
servo control of the gimbals to a few arc seconds was reasonably straightforward,
so null operation appeared feasible. The photomultiplier tube was, therefore, selected
since it is smaller than the image dissector and is designed for null sensing, while
the dissector is designed for off null operation.

Selection of an optical design involves chogsing a focal Tength/mechanical
package combination which can achieve sub-arc-second stability. Material mechanical
stabitity, as well as thermal considerations, arise. The effect of detector motion
can be minimized by selection of longer focal lengths - electronics errors also are
minimized by this process. However, thermal bending of the Tonger telescope becomes
more of a praobliem, and the size and weight penalties are apparent.

The goal was to choose a focal length which allows for sufficient thermal/
mechanical motion while not unduly affecting size and weight. A 100 inch focal
Tength was selected which allows less than 500 uinch lateral motion at the detector
per arc sec of error. Test and thermal analysis results on this design show that
it is, in fact, overly conservative. Based on these results, it appears that a shorter
focal Tength design would satisfy PPCS requirements, with a possible attendant weight
reduction. This latter design has, in fact, been pursued subsequently [15].

Two concepts for gimbal bearings were examined - conventional high precision
ball bearings and a unique single-ball bearing where a single ball at each end of
the shaft suspends the load. The sing]é ball concept uses a sliding contact between
the stationary ball and the rotating retainer - as a result, friction is higher than
for the normal ball bearing. However, greater precision can be achieved, since
bearing noise caused by ball-to-ball irregularities is eliminated also. The single
ball concept is simpler, since the only precision components are the ball and the
retainer. Servo and torgue motor problems caused by the high friction proved rela-
tively easy to solve, so the single ball approach was selected.
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Another major decision was selection of the gimbal angle encoder. The choice
here narrowed to Inductosyns or optical encoders. Inductosyns are functionally
similar to multispeed resolvers, having an excitation winding and a sine-cosine
pair of output windings. The windings are printed conductors imbedded on the faces
of two discs which are arranged to rotate coaxially with their faces in close prox-
imity. Multispeed winding patterns up to 360 speed and disc sizes from 3-12 inches
in diameter are available. Repeatability to fractional arc seconds can be achieved
with the six inch size - better repeatability can be achieved with larger sizes.
Comparable accuracy does not appear achievable with optical encoders of comparabie
diameter, so the 6 inch inductosyn was selected for the encoder. An initial draw-
back to the approach appeared to be the electronics required to process the outputs
to obtain the required resolution. Approaches to this problem were developed, how-
ever, which provide relatively simple encoding electronics with fractional arc second
resolution.

2.2.2 fGyro Reference

An assembly of single-degree-of-freedom, gas bearing rate integrating gyros are
used to measure short-term vehicle dynamic motion.

The fundamental gyro reference decisions related to configuration development
for redundancy/performance and choice of the gyro rebalance loop. The choice of
rebalance loop is whether to use a pulse technique or an analog rebalance with A/D
conversion. From a performance viewpoint, pulse torquing is favored when high input
rates are expected, since (in theory at least) only certain specific operating points
on the torquer response characteristic are used., and torquer nonlinearity effects are
minimized. A further consideration of high rates is torquer power sensitivity - a
pulse rebalance technique permits constant torguer power, while analog does not.
However, FPCS rates are reasonably small and the error terms above are, therefore,
not significant. High frequency (>1 Hz) errors caused by electronics would initially
appear harder to control in a pulse system - however, the analog loop uses demodula-
tors, etc., and cannot be entirely free from unwanted noise. A strong case for which
approach is best to minimize high frequency noise hasn't been estabiished. These
considerations findicate that from a performance point of view, either approach can
satisfy PPCS requirements.

Gyro interchangeability appears easier with an analog approach. The gyro
torquer is somewhat nonlinear and does have some nonlinear response to the harmonic
content of a pulse rebalance train. This effect can {and is) minimized by careful
control of torquer parameters and sometimes by optimizing the electronics/gyro inter-
face. These considerations indicate that to assure interchangeability of gyros the
analog approach is best. Primarily on this basis, the analog approach was selected
for PPCS. Note, however, that either mechanization, if properly done, will satisfy

~ PPCS performance requirements. 27



A gas bearing gyro was selected to avoid life limitations of ball bearings.
A number of minature gas bearing gyros with PPCS level performance exist - the
Nortronics GI-K7G was selected. This unit has a ceramic hydrodynamic gas spin
bearing operating in a beryllium float. A taut wire suspension system is used.

The packaging configuration for the Gyro Reference Assembly is primarily a
function of the missfon life requirements. For a non-redundant configuration, three
gyros mounted orthogonally in one package minimizes size and weight. For redundant
configurations, a two gyro package used as a building block seems to be a reasonable
compromise in size and weight. The gyros can be arranged in either orthogonal or
non-orthogonal configurations,'depending on the redundancy operating policy.
Independent electronics are provided for each gyro. The PPCS baseline configuration
uses a dodecahedron arrangement, with four of the six gyros operating.

2.2.3 Alignment Sensor

The alignment sensor was designed for PPCS by Barnes Engineering under sub-
contract to TRW [ 16]. Three-axis information is provided by nulling the measured
reflection of a collimated beam using rotating optical wedges and measuring the
wedge rotation reiative to the alignment sensor reference frame.

In order to measure the respective angles with an accuracy of 1 or 2 s&¢
over a range of 0.5 degree, a null measuring system is a necessity, since no off-
null measuring method is known in which the problems of light source intensity
stability, detector uniformity and stability, and dozens of other potential
problems can be controlled to that accuracy, especially in the presence of even
moderate temperature excursions. The key design tradeoff thus rested upon the
null tracking approach, since the error signal may be used in one of several ways
to cause the collimated beam to sweep in the proper direction until it is normal
to the reflector.

The selected method, which is theoretically perfect in its ability to sweep
the beam in a predictable manner, is a pair of contra-rotating wedges. This
approach employs an identical pair of glass wedges in optical series in the
collimated beam immediately in front of the autocollimator objective lens. When
the reflector is in the undeviated position, the two wedges are aligned in opposi-
tion; i.e., the deviation of one is cancelled by the other, and the two deviations
are both parallel to the measuring axis. A reflector rotation causes the wedges
to be rotated in opposite directions about the optical axis of the autocollimator.
Deviation in the desired direction is accompTished, and deviation in an orthogonal
direction is zero due to the cancellation effects of using dual wedges. If the
wedges are coupled to a simple resolver, which has an output which is a sine
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function of rotation, the resolver output voltage becomes direct measure of the
wedge deviation, hence of the reflector rotation. To achieve the nulling, the
orthogonal error signals are converted into polar coordinates. The amplitude of
the vector sum is used to rotate the two wedges as a unit to the correct azimuth
to null the vector sum. The output of two associated resolvers could then be re-
converted to appropriate output components.

The dual-axis contra-rotating wedge pair instrument is used, one each, for
both transverse axis rotation and for twist rotation. The second axis of the twist
instrument is used to account for cross-coupling. Thus the two instruments become
nearly identical in configuration.

2.2.4 Reference Block

Although it is desirable to develop a design which is modular to the extent
of being capable to accommodate any of the PPCS equipment configurations while
maintaining near-optimum weight and performance, the design of spacecraft structure
is basically incompatible with this approach. As a result, a single non-modular
design which incorporates the maximum number of assemblies was designed. The
extent of design was limited to establishing feasibility of meeting performance
requirements with a given geometry, structural concept, and thermal control system.

2.2.5 Computer and Data Interface

A relatively complete study of the design tradeoffs associated with data
processing and handling was conducted within TRW [17]. The key design consideration
was achieving the reliability objectives. The digital computer is organized 1in
modular form consisting of central processor, main memories, and memory busses.

Data interfacing between the computer and other elements is handled by a serial
data bus and I/0 controller.

Key results of the design tradeoffs indicated that reliability can be approached
only by use of switching redundancy techniques, thus leading to the modular organ-
jzation. The particular organization was straightforward except in the area of I/0,
where two basic configurations were considered- namely: integral I/0 and non-integral
1/0. In the non-integral 1/0 approach, the organization is such as to separate the
processar and 1/0 functions. The integrated input/output approach is designed such
that the input/output processing is integrated with the central processor. This
latter approach has the advantage of sharing the memory bus interface, some internal
control logic, and buffer registers. However, it is not as flexible as the non-
integral approach,and the nen-integral approach allows "cross-strapping” of central
processors and I/0. From a reliability standpoint, the non-integré] input/output
approach is superior and was selected.
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The data processing requirements are not very stringent for today's state-
of-the-art, e.g., >24 bit accuracy, 8K memory, and computational speed typified
by a 4 usec Add time. The requirements are met using MOS/LSI and plated wire
technology in the computer.

The data bus concept, wherein the various assemblies of a large system
communicate via a minimum of interconnecting cables (ideally one single wire),
provides an attractive appreach to PPCS data handling. The chosen configuration
allows high communication efficiency, ease of reconfiguration, equipment common-
ality and a flexible system design approach. A fundamental configuration choice
for the data bus is how data traffic will be managed. Choices range from central
control by the computer to remote autonomous operation where remote terminais
directly control the computer I/0. Central control simplifies remote terminal
hardware - at the expense of software complexity and communication efficiency.
Remote control (with computational capability at the remote terminal) permits faster
response and more efficient bus utilization at the cost of hardware complexity.

A review of PPCS communication requirements showed that a very high percentage
of data goes to/from the central computer with relatively little assembly-to-assembly
traffic. Control systems as a class are low data rate systems - PPCS, even with its
high performance and relative complexity, still has reasonably low traffic. A pre-
liminary estimate indicated about 30 KHz data flow for a 6 experiment configuration.
Since frequencies of 250 to 500 KHz are easily mechanized on a data bus, communica-
tion efficiency isn't 1ikely to be a problem for PPCS. Further, PPCS traffic is
likely to be stereotyped in format, with relatively few operating modes - thus
simplifying mechanization in a central control concept. On these bases, a baseline
concept employing central control was selected using an independent I/0 processor
with shared memory.

2.2.6 Experiment Gimbail and Electronics

The primary design consideration for the experiment gimbal was developing a
configuration suitable to meet coverage requirements of both space pointing (two-
axis} and earth pointing (three-axis). This was achieved using a configuration
where the inner and outer gimbals are capable of full 360° rotation, and the
middle gimbal provides a limited rotation capability to satisfy earth pointing
requirements. For space pointing, the middle gimbal axis is deleted (which both
simplifies and 1ightens the unit). Otherwise, the gimbal design is relatively con-
ventional with particular care taken to achieve mechanical and thermal symmetry.
The electronics design is analogous to that for the star tracker electronics.

2.2.7 Antenna Gimbal and Electronics

The antenna gimbal used for PPCS makes use of an already developed and flight
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proven TRW two-axis geared stepper motor drive. Each drive unit contains a stepper
motor with integrally attached gearhead, a harmonic drive, dual speed resolver, and
supporting bearings. The electronics provides for motor drive and encoding of the
muiti-speed resolver signals. '

2.2.8 Software

The software design is, in general, characterized by achieving desired system
performance with the minimum of equation complexity. Throughout the equation de-
velopment, for example, models derived to compensate for systematic errors in the

on-board system are simplified to the level consistent with desired performance.
In most cases, for example, this resulted in only first-order terms being retained.

The software is designed to perform executive functions {program control,
TLM/CMD, self-test, system test, etc.), attitude determination,and pointing control.
The attitude determination software derives inertial attitude by integration of the
gyro outputs, and employs a Kalman filter for perjodic updates to bound the errors.
Development of the attitude determination equations'required a variety of tradeoffs
to determine the appropriate algorithms and design approach. On the other hand,
development of equations for transformations, target selection, and gimbal pointing
is straightforward, although algebraically complex. As a result, the primary
design effort was directed toward the former.

Choice was available for selection of the kinematic variables used to pro-
pagate attitude through the required numerical integration. Euler Symmetric
Parameters were selected, as opposed to direction cosines, based upon the use of
a four, rather than nine, parameter system of equations; also, the pericdic re-
normalization that must be performed to combat computer roundoff error is much
simpler. A closed form solution is utilized, under the constraint that the vehicle
rate can be assumed constant over each integration interval. The closed form
solution tends to inhibit the truncation error that would normally exist in the
power series representation. Design analysis was also conducted to establish the
integration step size and the effect of computer (roundoff and truncation) errors.

Because of availability of the star tracker, some inherent flexibility is
available in the selection of stars and the storage of a star catalog. The re-
quired total catalog is small, generally less than 50 stars for a complete mission.
Options for catalog storage include storing only partial catalogs which are peri-
odically updated if on-board storage is a premium. Although it is well known
that two independent star sightings are required to determine vehicle attitude,
the method of selecting stars is not so straightforward. Four possible approaches
to star selection were considered. The baseline technique selected for PPCS is to

use stars which have the greatest angular separation from the star used just pre-
viously. An additional constraint can be applied that conditionally forces the
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use of other stars if a particular star is repeatedly selected, e.g., to gain some
additional independent star measurements.

The Kalman filter state vector was limited to six elements {three attitude
variables and three gyro biases) to minimize the problem dimensionality while
achieving desired performance. Additional states (such as alignment/scale factor
parameters in gyros and trackers) were found not to be justified based upon inherent
accuracy/stability and/or relative sensitivity. The extended Kalman filter formu-
lation is utilized where linearization takes place about the previous attitude
estimate,

The Kalman filter requires apriori definition of the initial state error
covariance matrix, the measurement noise covariance matrix, and the state noise
covariance matrix. The initial error covariance matrix reflects the initial
uncertainty of the state estimates, and the elements are selected apriori based
upon the expected initial attitude uncertainty. There appeared to be 1ittle in-
fluence of the initial estimate for error covariance, but good design practice
indicated selection of values larger than the actual expected initial attitude
errors.

State noise arises principally from the gyro random drift, and the elements
of the state noise covariance matrix are derived apriori based upon the estimated
(measured) gyro noise statistics. The influence of state noise on performance
was evaluated by evaluating the relative error as a function of state noise
parameters. A value of the elements of the state noise covariance matrix can be
determined which corresponds analytically to the value of gyro noise assuming
a white noise gyrc model. The tradeoffs findicate that a good design procedure
is to utilize the analytically derived values for the state noise covariance
matrix which correspond to a conservative estimate of gyro noise.

The elements of the measurement noise covariance matrix are based upon
apriori estimates (measurements) of tracker noise. Tradeoffs were made for
selection of elements of the measurement noise covariance matrix utilizing a para-
meter variation study employing various values of tracker noise and measurement
noise covariance values. This tradeoff led to the indication that performance
can be best achieved through selection of elements of the measurement noise
covariance matrix which are, in fact, optimistic,

The PPCS software is configured in a modular structure which will permit
operational flexibility, capability for growth, and ease of modification. The
software makes use of state-of-the-art techniques so far as possible, consistent
with the capability of present generation spaceborne computer technology. The
software is segmented into modules to be executed under control of the PPCS
Executive according to a preassigned interactive cycle. Individual program module
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interfaces have been allocated based upon cycle requirements of the main computa-
tion Teops.
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3.0 SYSTEM DESIGN

PPCS is designed as an integral system to perform precision attitude deter-
mination and gimbal pointing control. This section presents the system-level desig
definition. A functional description of PPCS is discussed initially, presented
within the context of a typical orbital configuration and a detailed system func-
tional block diagram. This is followed by a description of the operational
characteristics of the system including pre-launch, initialization, initial conver-
gence and operation, calibration and boresighting, and operating modes.

Definition and allocation of design requirements to the hardware/software
elements is dealt with next. These allocations are deVe]oped on the basis of
meeting overall PPCS requirements, which are summarized, as well as design trade-
of fs and analyses which are detailed within this section and elsewhere in. this
report. The section closes with definition and discussion of the system interfaces.
both internal (e.g., signal interface) and external.

3.1 FUNCTIONAL DESCRIPTION
The functions characteristic of the PPCS system design are summarized as:

e Development of precise on-board attitude defined relative to the
Earth-Centered-Inertial (ECI) coordinate frame, using strapdown
gyros and a_gimbaled star tracker as primary sensors.

o Development of a precise spacecraft attitude reference relative to
a local vertical, orbit normal coordinate frame through on-board
ephemeris.* S

e Development of a precise alignment reference for from one to six
non-integral (e.g., boom mounted) experiment gimbals using
optical alignment sensors,

¢ Pointing from one to six independent gimbaled experiment platforms.

¢ Pointing an antenna at one of three data relay satellites, either
open Toop (command steer), or using {optional) autotrack signals.

3.1.1 Configuration

A typical configuration of the PPCS functional elements is shown in Figure 3-
These functional elements are of modular design to provide versatility for satis-
faction of a wide range of design requirements, and can be employed in various
configurations to satisfy particular redundancy and/or performance requirements.

The star tracker functions to provide a direct measure of attitude. The
gimbal mounted star sensor electronically tracks the brightest star within the fiels
of view, and the sensor error signal is used to null track via the gimbal servos.

*Development of on-board ephemeris not a part of PPCS
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Tracker servo control/gimbal drive functions and gimbal readout processing are
provided in separate electronics. Both the tracker gimbal angles and sensor error
are provided to the computer, '

The strapdown gyros provide a short-term measure of jncremental attitude.
The outputs of each of the NG rate integrating gyros is a series of pulses, each
of which represents a fixed angular rotation of the gyro input axis in inertial
space. These pulses are accumulated in a register over the period of an integratior
step. The register content, a6, is readout as a data word into the computer each
period and reset to zero in a fashion such that no pulses are missed.

The alignment sensor tracks the small-angle rotations of the gimbal base
reference {e.g., reflector) relative to the alignment sensor. Alignment informatiol
is provided by nulling the measured reflection of an autocollimated beam relative
to the known sensor {autocollimator) reference frame. The alignment sensor outputs
to the computer include both the measured alignment as well as the sensor error
signal. '

The Reference Block Assembly is an element whose design, strongly influenced
by the spacecraft, provides a stable mounting platform for the critical sensor
assemblies. Hard-mounted to the reference block are the star tracker(s), gyros,
and autocollimator elements which are required to maintain a stable relative
mechanical alignment.

The experiment gimbal functions to provide a precision actuator for the
gimbal mounted experiment payload. The gimbal electronics are utilized to develop
the gimbal servo drive and provide gimbal readout processing which is output to
the computer. Gimbal commands are received from the computer. Analogously, the
antenna gimbal and electronics provide the actuation function for antenna pointing.

The on-board digital computer and I/0 interface controller are used to
implement the system data handling and data processing functions.

3.1.2 - Functional Block Diagram

The PPCS system functional block diagram is shown in Figure 3-2. "Discussion
begins with the inertial attitude determination functions. The NG gyro output data
words are used to construct a vector which represents the total (small-angle)
rotation during the integration period. The estimate of rate measured by each gyro
is derived by the differentiation of a second-order fit to the measured attitude
data. This rate vector is then mu]tip]ied by a 3xNGI "geometry" matrix which accoun
for gyro input axis alignment and scale factor. The result is an estimate of rate
about the desired orthogonal reference axes.

Gyro drift bias estimates, computed periodically by the Kalman filter, are
used to correct (compensate) the rate estimates. The estimated rates are then
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integrated to provide a continuous, three-axis estimate of attitude relative to an
inertial reference frame. Euler parameters are utilized as the kinematic variables,
and a relatively simple closed form solution is utilized to compute attitude. The
computed attitude is used to genmerate a direction cosine matrix relating the

vehicle to the inertial frame.

Periodically, an update of the kinematic variables and gyro drift estimates
is initiated . An on-board star catalog is utilized in a star selection algorithm
to define a particular target star. Based upon the current attitude estimates,
tracker gimbal angles are commanded such that the star tracker is slewed to point
to the target star. The slew "servo control" is provided within the supperting
tracker electronics, with gimbal angle/rate commands provided by the computer.
Once the tracker has acquired the star, the computer commands the tracker servo to
use the sensor errvor signals, and the tracker then continuously tracks the star at
null.

A Kalman filter is used to develop optimum estimates for a six-element state
vector, incorporating three attitude variables and three gyro drift bias terms.
The error between the measured and estimated gimbal angles, after compensation for
known biases and misalignments, is used to generate the measurement residual vector.
This vector is multiplied by the Kalman filter gain matrix to develop an incremental
correction to the state vector and the estimates of attitude and gyro drift bias
updated.

To develop the attitude relative to the local vertical reference (e.q., con-
ventional roll, pitch, and yaw), the inertial attitude is combined with on-board
ephemeris data. The ephemeris is used to create & direction cosine matrix relating
the local vertical frame to the inertial frame. It is then a simple matter to
carry out the appropriate matrix operations. (It is noted that development of an
on-board ephemeris is a function which was not within the scope of the PPCS study.)

To determine the attitude of a reference frame other than the primary attitude
determination reference, it is necessary to know the relative orientation. If
the reference frames are physically close-mounted (integral) and stable, apriori
alignment knowledge is sufficient. For systems with non-integral payloads, the
three-axis alignment of the remote reference {e.g., gimbal base) is measured to
determine the relative orientation. The relative attitude of the gimbal base is
established using the measured_(and compensated) a11§nment sensor outputs. The
alignment sensor reference is stable and known relative to the attitude determina-
tion reference through close mounting on a stable mechanical reference. It is then
a simple matter to determine the gimbal base reference relative to any desired
coordinate frame, e.g., inertial, local vertical.



For pointing control of the platforms, target data (periodically stored on-
board using data from the ground) is used to generate appropriate target vectors.
These target vectors, when transformed relative to the appropriate gimbal base
reference, become the basis for generation of steering commands {gimbal angle and
rate) for open loop pointing control of the gimbals. Target data is provided
relative to one of three coordinate frames, namely - inertial, earth-fixed, or
local vertical. In each case, the target vector coordinates are transformed
initially to the inertial frame. The target coordinates are then transformed into
the experiment gimbal hase reference frame using the previously determined gimbal
base orientation. Experiment gimbal angle and rate commands are computed by solving
for the gimbal angles that would align a set of axes on the gimbaled platform with
the ‘appropriate target vectors, accounting for known alignments and biases within
the gimbal set. Commands are provided from the computer with serve control
implemented within the supporting gimbal electronics.

For pointing the antenna, the target vector (LOS) is_ébmﬁuiéai{h inertial
coordinates based upon stored data relay satellite ephemeris, and gimbal commands
computed in a fashion similar to that for the experiment platforms. The gimbal
commands are again output from the computer to the servo-controlled gimbal to
1mp1emeht the pointing commands.

3.1.3 QOperational Description

This section describes the overall system operation encompassing prelaunch,
launch and deployment, infitial operation, and calibration. Prior to launch, the key
operations are those of alignment, system calibration, and initialization. Parameter
values to be determined and entered into the computer are those which define gyro
"geometry", tracker alignment/biases, gyro drift bias, autocollimator alignment/
biases, platform gimbal alignment/biases, and Kalman filter parameters (initial
state vector estimate, measurement noise covariance, state noise covariance, state
error covariance). The values of the parameters established prior to launch are
used until appropriate on-orbit calibration is performed (if desired) to generate
updated values. Through the periods of launch and orbital injection, the elements
of PPCS are disabled or in a quiescent standby mode. During launch, the mechanical
elements are protected against the launch environment through caging or other
suitable means.

The post launch operational seguence is shown in Figure 3-3. PPCS remains
in the quiescent mode during spacecraft deployment, acquisition of the orbit plane/
Tocal vertical reference, and initial operation. When desired, the acquisition of
the PPCS celestial/inertial attitude reference is initiated by command. Initial
attitude uncertainty may be as much as + 3 degrees per axis. Thus, it is required
to perform a search for the initial target stars. Operationally, this is accomplished
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by maintaining the attitude reference with the gyros (utilizing the initialized
state vector estimates) while the star tracker executes a programmed search to
acquire the selected initial star. The uncertainty region of 6°x6° may require up
to approximately 11 minutes for complete (worst case) search for the tracker optical
Egy of 10x10 min and star recognition time of 0.5 sec.

After tracking the initial star Tong enough to extract the required data for
the Kalman filter, a second star will be sought. Due to data from the first star,
the uncertainty region of the second star will be much smaller {e.g., 6°x1°),
requiring a much briefer search. After assimilating data from the first two stars,
all subsequent stars can be located without searching. (It has been observed that,

_in many cases, search is not required after the first $tar.) A nominal update
period of 5 minutes has been established. Thus the star tracker will be slewed to
track and measure independent stars prior to each computed update, i.e., every five
minutes. It is noted that the system has been designed such that independent star
data may be obtained as often as every 30 secbnds, if desired. Eﬁﬁ%gﬁdbﬁé ffack%ﬁg
of a known star is performed at all times except for the time taken to slew between
successive stars. Steady-state attitude reference accuracy is established consistent
with prelaunch system alignment and bias uncertainties. Typically, 30 to 60 minutes
will be required for convergence, during which time thermal equilibrium is reached.
The alignment sensors, platform gimbals, and antenna gimbals will be enabled upon
command following attitude reference convergeance. The alignment sensors may be
stepped or slewed in either direction (by command) to achieve initial acquisition
of the reflected beam. Once acquired, the autocollimators track automatically.

Gimbal control for each of the experiment platforms is based upon commanded
targets transmitted from the ground to the on-board computer. These targets may
be stored via the uplink as often as once each orbit. Each of the platforms is
controlled separately, generally with different targets. The target commands are
time tagged and take one of three forms, namely:

o Angles relative to the local vertical coordinate frame are
specified as roll, pitch, and yaw. If the angles are given
as zero, the platform is pointed such to align the l1ine-of-sight
axis along the local vertical (toward the subsatellite point)
and the orthogonal out-of-plane axis normal to the orbit plane.
If only pitch and/or roll is specified, the gimbal angle about
the line of sight is censtrained to zero.

e Latitude, longitude, and radius from the geocenter is specified.
The platform is controiled to point the line-of-sight axis toward
the particular geographic point on or near the earth surface,

® Right ascension and declination are specified relative to the ECI

coordinate frame. The platform is controlled to point to the
particular point on the celestial sphere.
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The antenna pointing operation is similar to experiment platform operation
In the low altitude orbits, the antenna target will be one of three geosynchronous
data relay satellites. Orbital geometry will require relatively freguent re-
targeting via a slew mode. In geosynchronous application, the antenna is continuous-
1y oriented toward a ground station. Ephemeris of the data relay satellites {or
alternatively the relay sat21Tite subpoint) will be utilized to generate target
vectors on-board.

Prior to operational use, a variety of in-flight calibration and hboresighting
procedures may be utilized, including end-to-end system calibration using experiment
data and attitude reference internal checks (e.g., consistency checks using redun-
dant star tracker and gyro data}. These procedures can be periodically conducted
throughout the mission, if desired, and can be key to achieving the system perform-
ance goal of 0.001 degree pointing accuracy. The initial alignment uncertainties
through the launch environment and initial orbital transients, although anticipated
to reflebt these accuracy goals, are of such a nature as to require capability for
on-orbit observation/updating. The predicted on-orbit performance is based upon
small contributions of error sources which are not calibrated and long-term
stability of those which are.

Attitude determination calibration and pointing control boresighting is
accomplished by ground-based support software which processes telemetered data
from on-board measurements. This procedure may be conducted "off-line" in the
sense that real-time processing is not required. The parameters thus derived
are inserted, via ground command, in the on-board software to obtain ultimate
system accuracy. The time required for interfacing with PPCS will depend upon the
extent of calibration/boresighting required (and should be considerably shorter
after the first operational cycle).

The calibration process associated with inertial attitude determination is
effective in removing alignment errors of the star tracker and gyros relative to
a set of reference axes on the star tracker gimbal base. Boresighting of experiment
pointing will require end-to-end data; that is, attitude determination data in
conjunction with data from & boresight sensor on the remote experiment serviced
by the collimators and experiment gimbal (e.g., landmark data from an imaging
payload, gimbal angle data from a tracking payload).

The calibration technique employed for attitude determination calibration is
discussed briefly. In general terms, this approach amounts to evaluating the con-
sistency of a series of star sightings and the intervening gyro-developed attitude
increment data. The presence of systematic errors will result in measurement
inconsistencies yielding information from which the {modelled) error source magni-
tudes can be identified and subsequently calibrated. On the other hand, if the
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system is perfectly calibrated, or if the residual errors have no noticeable effect
upon system performance, measurements will be consistent to the degree permitted by
system noise.

The calibration is implemented using a Kalman filter which, as in the on-board
software, utilizes gyro data and periodic star tracker measurements. However,
rather than a six-state filter (as in the on-board system), the calibration software
deals with an enlarged state vector including the calibration parameters, e.g.,
misatignments, biases, etc.

Figure 3-4 displays this attitude determination calibration problem graphically,
indicating the various parameters to be calibrated and the associated topology. Gyro
calibration parameters include terms defining input axis aTignhent, drift bias, and
scale factor. Star tracker calibration parameters include detector bias/misalign-
ment and gimbal alignment.

Bo%ésighting of the experiment p]a%fdfm assumes é@éi]ahilityfof a-bores{ﬁht
sensor. The boresight sensor data is transmitted to ground via telemetry so that
by correlating the gimbal readout data and the boresight sensor data one can
determine the measured gimbal angles at the time the known target is within the FOV.
The aim is to calibrate the system with several of these measurements by either
using several preselected, known targets or by using the same target repeatedly
in conjunction with preprogrammed, large angle spacecraft attitude changes. It
is clear from physical considerations that the calibration measurements do not only
reflect the various misalignments of the pointing system but also reflect the
attitude determination errors. Furthermore, using landmarks for calibration of
pointing misalignments makes the system sensitive to ephemeris errors.

For the boresighting problem, it is assumed that the attitude determination
system has been calibrated separately and that no further improvement in attitude
determination through additional calibration measurements is required. The influence
of the remaining attitude determination errors must then be discounted as "noise"
on the pointing calibration measurements. If the attitude determination errors are
consistently biased in the same direction, this is a bad assumption. However, if
the attitude determination errors averaged over the calibration measurements yield
approximately zero (in the first order terms), then this is a good assumption.

If the attitude determination errors are considered uncorrelatad noise on the
calibration measurements, then the task of calibrating the misalignments in the
pointing system becomes one of estimating constant parameters. Here we are interest-
ed in computing the misalignments given the target and the observed gimbal angles.
Since the gimbal angle measurements are contaminated by noise, one really cannot
"compute" the misalignments but merely obtain a "best" estimate. In this case, the
task of estimating the misalignments for sufficiently many observations leads to a
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one-shot, least squares estimate. It is noted that a state vector could be formed
of the attitude variables and pointing calibration parameters, and sequential
estimation performed using a Kalman filter. However, it is not anticipated that
the additional complexity of such an approach would be required.

In the event of system failures, backup modes of operation are incorporated
into the system design. These modes will provide the capability for PPCS to function
(in a potentially degraded fashion) in the event of failure or degradation of a
component or subsystem. The guideline, operationally, regarding failures is that
hard failures will be detected and corrected for on-board, whereas soft failures
will be detected and corrected for using ground-based means. The PPCS computer
becomes the.central element for on-board failure detection. The computer will
periodically evaluate the status of the system to detect early failure symptoms.

For attitude determination, the redundant operating gyro, together with the
star tracker, provides a means of failure detection for any of the-five operating -
elements without losing attitude reference. If a gyro is detected to be drifting
out of tolerance, it will be shut down and one of the standby gyros will be brought
to an operating status. The three remaining gyros will maintain the short-term
inertial reference during this transition state. A star tracker failure will
result in the unit being shutdown and the standby unit brought up to operatiocnal
status. The four operating gyros will maintain reference during this transition.

Failure in the experiment gimbals or pointing commands will result in the
gimbal system being driven to null, if possible.



3.2  REQUIREMENTS DEFINITION/ALLCCATION

PPCS system requirements have been achieved with a design which meets or
exceed all performance goals and whose elements are of state-of-the-art design
and attractive for flight application. Design requirements for individual hard-
ware assemblies were defined as appropriate to establish the system performance
capability. These requiremants inciuded such considerations as configuration,
accuracy, and reliability and were, in many cases, allocated from the PPCS system
requirements. The PPCS system reguirements and detailing of the basis for design
requirements allocation are summarized in the sections which follow, with the
design requirements for each assembly individually considered.

3.2.1 Syétem Requirements Summary

The basic functional requirements may be succinctly stated as:

® Precisely point and maintain the orientation of from one to six
independent platforms at earth targets (with three degrees of
freedom) or at space targets (with two degrees of freedom).

8 Accurately point and maintain the orientation of one antenna
with two degrees of freadom.

PPCS system requirements, reflecting the contract Statement of Work, are
summarized in Tables 3-1 and 3-2 for performance requirements and component
specification, respectively. Several of these requirements are worth comment.
For the PPCS design, the accuracy goal was established as the (internal) TRW
requirement. It was also considered appropriate to establish an acquisition goal
considerably less than the one day requirement, on the order of an hour or less.
Finally, life requirement of 3 to 5 years was translated into requirements of
numerical reliability to give a quantitative basis for design. A design goal of
0.9 for one year (0.72 for 3 years) was established for PPCS (attitude determination
alignment, processing, single experiment, and antenna). A separate goal of 0.98
for one year (0.94 for 3 years) was defined on the attitude determination and data
processing functions, respectively, due to their central nature to the overall
system.

3.2.2 Star Tracker Assembly

Requirements were developed for the star tracker by consideration of a
variety of interacting influences including acquisition period, overall system
accuracy, and update fregquency. These result in design reguirements on the tracker
for sensor accuracy, noise, star sensitivity, gimbal freedom, alignment accuracy,
and readout uncertainty. The design requirements are summarized in Table 3-3.

The PP{S requirement for acquisition is to accomplish this in less than one
day (Table 3-1 ). As noted earlier, however, it is desirable to be able to
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Table 3-1 PPCS Performance Requirements

Description Requirement
Accuracy (each axis): dincludes atti- Platforms (to local vertical and offset):
tude determination, alignment transfer, 0.001 deg (7o) RMS goal (3.6 Sec)
and experiment pointing control 0.003 deg {1a) acceptable

exclusive of ephemeris errors.
Antenna (to relay satellite)
0.03 deg

Platform coverage Earth targets, local vertical and offset:
+ 45° from local vertical
+ 10° about local vertical

Space targets;wz_blatform complement:;
4, steradian

Antenna coverage 105 degree from upward vertical in any
direction

Acquisition time Not to exceed one day

Orbit Geosynchronous

Low altitude {200 to 2500 nm) sun synch.
Life 3 to 5 years, continucus operation

Environment Thermal: 10-40°C
Vibration: Titan III

Spacecraft Attitude Control Nominal: + 1.0 deg, + 0.02 deg/sec
Worst Case: + 3.0 deg, + 0.06 deg/sec

Ground Control Ephemeris/calibration updates: not to
exceed once per orbit
Latitude, Tongitude, and radius
commands far pointing
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Tahle 3-2 Specification of System Components

Inertial Reference
Strap-down gyro system
State-of-the-art gyros

Computer

Six platform drives whose load characteristics {including gimbal},
are assumed as having mass of 20 slugs and inertia of 100 slug-ft .

Six 3-axis autocollimators to measure up to 0.5 degree over distance
of 1 to 10 ft with Tateral displacement as large as 0.5 in. at
Tonger distances. (Measurement is to be optical).

One 2-axis antenna drive. Assume maximum antenna misalignment
one min (correction not required) and limit all other errors to
one min per axis. Assume antenna to be 4 ft cube, weighing
25 1b, having the gimbal attached to the center of one face.

Star Tracker whose design is to be compatible with overal] system
accuracy.



Table 3-3 Summary of STA Design Requirements

Functional

Provide for acquisition and tracking of stars within sensor
optical field of view.

Provide for acquisition and tracking of stars within mech-
anical field of view through gimbal motion in 2-axes in
response to moter drive signals.

Provide outputs of the detector error s1gnals and gimbal angular
position data.

Provide a capability for preflight test and calibration in one-g
enviranment.

Provide for suitable mechanical alignment with respect to other
system elements mounted on the Reference Block Assembly.

Performance

Mechanical field of view shall be not less than +45 degrees
about the outer gimbal axis and +15 degrees about the inner
gimbal axis.

The peak gimbal rate capability shall be greater than 3 deg/sec.

The system must have, as a minimum, sensitivity to and ability
to track stars of +3.5 {S-20 Magnitude).

The sensor optical field of view shall be not less than 10 min x
10 min, and the system must acquire and track stars which enter
the field at rates up to 0.25 deg/sec. Acquisition shall occur
wath 0.5 second after a star of sufficient brightness enters the
FOV

The STA shall be capable of tracking, to design accuracies, to
within 15 degrees of the center of any bright object other than
the earth or sun, to within 15 degrees of the 1imb of the earth,
and within 45 degrees of the center of the sun.

The sensor noise equivalent angle in a 5Hz bandwidth shall be
less than 0.5 sec (1o, per axis).

Uncertainties in measurement of the star LOS due to the STA
shall be less than 1.0 se¢ (1o, per axis)



establish acquisition or reacquisition much more rapidly. As a result, the sensor
characteristics (e.g., optical field of view, star Jock/track, etc.) in conjunction
with the gimbal characteristics (e.g., angular freedom, search rate, etc.) must be
sufficient to scan the initial attitude uncertainty within a relatively short
period of time.

With this in mind, a period of 15 minutes was allocated for search and
acquisition of the initial reference star. This reflects itself on the STA as a
requirement to be able to search and acquire a star within a 6°x6° celestial field
(worst case vehicle motions) in less than a 15 minute peried. To assess the
realism of this requirement, assume 0.5 sec to lock onto a star within the sensor
FOV and determine the required FOV. The resultant tracker optical FOV is approxi-
mately 140 minZ, e.g., 1.8 min x 11.8 min. For a FOV of 10 min x 10 min, the
search period would require 648 seconds (approximately 11 minutes). In this latter
case, as much as 43 degrees of orbital motion would cdrrespond to the star search
period in the lowest altitude orbit (200 n.m.). For a star in the orbit plane,
this implies a worst case mechanical FOV of greater than + 22 degrees. The result
for the singular case of the star along the orbit normal is also noted, where
relative motion of the star line with respect to the vehicle can be zero. Clearly,
the actual cases of interest will be somewhere between. If the gimbal null axis
of the tracker 1ies in the plane of the orbit normal and Tocal vertical and less
than 45 degrees above the local horizontal, then a mechanical FOV of + 15 degrees
is adequaté for initial search.

Although gimbal freedom is clearly influenced by the acquisition requirement,
star seTectivity (including bright object avoidance) and sensitivity play the
major roles. The most ideal situation to obtain three axis information with a two-
degree-of-freedom tracker is to be able to observe stars whose lines of sight are
orthogonal. Therefore, it is desirable to have approximately 90 degrees of gimbal
freedom in at Teast one axis. Gimbal freedom in an orthogonal axis can be 1imited
to the extent of providing sufficient stars. Tracker sensitivity and gimbal free-
dom can be traded based upon desired star separation, a desire to minimize the star
catalog, or desire for multiple stars within the FOV. The star availability studies
discussed in detail in Section 5.2 yielded requirements for a threshold magnitude
of + 3.5 (S-20) and gimbal freedom of + 45 degrees for the outer gimbal and + 15
degrees for the inner gimbal based upon considering both low altitude and geosyn-
chronous orbits. Modest gimbal rates, on the order of 3 deg/sec, are required to
meet the maximum update frequency capability, i.e., 90 degrees in 30 seconds. The
accuracy requirements are based upon the results of the system error analysis.



3.2.3 Sensor Electronics Assembly

The design requirements for the Sensor Electronics Assembly (SEA) include
providing servo control logic/frequency compensation and the drive circuitry for the
STA servaos and provision of gimbal readout processing yielding both a measure of
gimbal angle and rate. The design requirements are summarized in Table 3-4. .

Bandwidth and frequency compensation requirements are defined by the star
tracker gimbal servo analysis {Appendix G ). In the track mode, angle measure-
ment must be consistent with the error analysis budget allocations. In the slew
regime, degraded accuracy can be accepted to a level consistent with open-loop
pointing to a star well within the 10 min sensor optical FOV.

3.2.4 Gyro Reference Assembly

Requirements on the gyro assembly were developed primarily from considerations _
of reliability and accuracy. A detailed specification is provided in Appendix J, ,
with a summary of key requirements shown in Table 3-5. The maximum rate to be
measured is based upon potential spacecraft slew and/or reacquisition motions, and
represents a generous allowance over the worst case specified limit cycle rates of
0.06 deg/sec in all axes, combined with the worst case orbit rate of 0.065 deg/sec
at 200 n.m. The accuracy requirements have been developed on the basis of the error
analysis/allocation of Section 4-2. The gyro bandwidth is selected so as 1o be
a negligible factor for vehicle motions of the nominal class of carrier spacecraft.

3.2.5 Alignment Sensor Assembly

Assembly design requirements are summarized in Table 3-6. The performance
requirements are influenced by the characteristics of the boom structure mounting
the remote gimbal-base reference to the spacecraft, alignment of the interface
structure, and thermal deformations. Boom structural characteristics have been
assumed using a representative boom design [18]. Brief analysis yields a boom
natural frequency of approximately 1.5 Hz and a total angular deflection of less
than 20 sec.

3.2.6 Reference Block Assembly

The preliminary design requirements on the Reference Block Assembly (RBA) are
straightforward, but critical to a satisfactory system. The RBA must provide
mechanical support for the multiply-redundant Gyro Reference Assembly, the two Star
Tracker Assemblies, and from one to six Alignment Sensor Assemblies. The RBA must
assure stable and observable alignment of the sensor assemblies relative to one
another to within 0.5 sec {15, per axis).
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Table 3-4 Summary of SEA Design Requirements

Functional
¢ Provide Inductosyn readout processing for gimbal angle and rate.
¢ Provide servo and motor drive electronics for tracker gimbal
control.
¢ Condition all STA and SEA telemetry and commands.
Performance
¢ Inductosyn processing will provide gimbal position and rate
signals over the entire range of gimba]'trave1 and all gimbal
rates. Operation can be considered in two regimes, slew and
track. In the track reg1me gimbal angle measurement accuracy
must be better than 0.5 €e¢ (o). During slew, gimbal angle
measurement accuracy may be relaxed by an order of magnitude or two.
® Motor drive circuit design should provide for minimum dependence
of drive torque upon position {(e.g., by quadrature drive signals,
if appropriate).
s Motor drive circuitry bandwidth shall exceed 300 Hz.
e Control electronics will use a computer generated gimbal angle

error signal or command during slew which, with.appropriate
frequency compensation, is combined with an inner loop utilizing
rate signal from the inductosyn. During track, the error signal
is derived from the sensor output and processed in a similar
fashion wholly within the SEA.



Table 3-5 Summary of GRA Design Reguirements

Functiona1

Provide multiple redundant measure of spacecraft angular rate,
using six torque-rebalance rate integrating gyros.

¢ Provide suitable provision for mechanical alignment with other

system elements mounted on the Reference Block Assembly.
Performance

¢ The maximum input rate about any axis during operation will be
5 deg/sec. The maximum rate about any axis which must be measured
is 1.5 deg/sec.

® Quantization shall be less than 0.2 sec.

o The gyro fixed bias shall be less than 5 deg/hr. The random
drift shall not exceed 0.005 deg/hr {1o) during any 30 minute
period. As a goal, the random drift rate uncertainty should
remain less than 0.002 deg/hr during any 30 minute period.

¢ Input axis alignment shall be stable to 10 sec over a five
year period. In addition, the input axis should remain stable
to 3 sec over any 30 day period.

®» Torquer scale factor uncertainty shall not exceed 100 ppm,
including nonlinearity and random vibration.

¢ Effective gyro bandwidth shall exceed BHz.
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- Table 3-6 Summary of ASA Design Requirements

Functional
¢ Measure the small angle motions in three axes of a remote
reference frame.
® Provide suitable provision for mechanical alignment to the
RBA.
Performance
¢ The accuracy goal is 0.5 sec (1o) for transverse axes and
2.6 sec (10) for twist.
® In-spec operation must be provided for distances of up to
10 feet.
e Measurement range must be consistent with +0.5 degree rotation
(each of three axes) and +0.5 inch lateral deflection at 10 ft.
¢ Bandwidth should be sufficient to meet accuracy requirements

with the following characteristic sinusoidal motion:
10 sec at 10 Hz
100 sec at 1 Hz
1000 sec at 0.1 Hz
1800 sét at 0.06 Hz

Step inputs should be nulled at 640 séc/sec or faster
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3.2,7 Experiment Gimbal Assembly

The design requirements for the EGA are summarized in Table 3-7. The
requirements are based primarily on the required operating modes, coverage, and
error budget/analysis.

The following operational modes are envisioned for earth experiment control:

(1) Local vertical and local vertical offset pointing

(ii) Geographic (landmark} pointing

(ii1) Slew
Mede (i) is a relatively benign regime, in which the experiment gimbal is counter-
acting spacecraft attitude excursions in order to maintain a fixed experiment
orientation relative to the rotating geocentric reference. Mode {ii) requires the
gimbal accelerations and relatively high rates associated with tracking a geocentric

target. The tracking acceleration and rate requirements are based upon the worst
case resuiting from the low altitude requirement {200 min).

Mode (iii) includes all transient operations, such as re-targeting, transfer
from one steady-state mode to another, etc. This mode determines peak acceleration
and rate requirements, these parameters being a function of the speed with which
these maneuvers are to be accomplished. The point-to-point slew rate capability
was established as a value which would not place severe constraints on the system
design while still giving reasonably short periods between tracking targets of
interest.

The following operational modes are envisioned for space experiment control:
(i) Autotrack
(i1} Space pointing
(iii) Slew
In the first two modes the experiment LOS is aligned to some quasi-inertial
point (e.g., the moon or a star), with the controller maintaining the alignment in
the face of spacecraft motions. Gimbal rates will be modest, except when the inner
gimbal angle approaches 90 degrees (resulting in outer gimbal rates which can

approach several degrees per second). Slew rates depend upon the time allowed
for retargeting the experiments and the command strategy employed in reorientation.

3.2.8 Experiment Electronics Assembly

The design requirements for the EEA include providing servo control and drive
electronics for the EGA and gimbal readout processing. These requirements are
summarized in Table 3-8. Accuracy required is derived from the system error
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Table 3-7 Summary of EGA Design Requirements

Functional

Point precisely in each axis in response to motor drive
voltages frcm the Experiment Electronic Assembly (EEA).

Provide a suitabie mechanical interface with the spacecraft
structure, e.g., at the end of a deployable boom.

Provide a suitable mechanical interface with the reflector
elements of the alignment sensor at the gimbal base with
provisions for precise alignment.

Provide a suitable mechanical interface for the gimballed
experiments (i.e., a mounting “platform") with provisions

for precision alignment,

Provide gimbal angular position data.

Provide signal and power transmission paths for the experiments.

Provide mechanical protection during pre-launch, launch and
other spacecraft operations prior to PPCS activation.

Provide a capability for pre-flight test and calibration in
a one-g environment.

Accommodate a wide variety of payloads, either by a single
general-purpose design or via multiple designs.

Include provision for caging at zero gimbal deflection
{mechanical or electrical} in the event of a failure affecting
experiment control.

Performance and Design

EGA electro-mechanical design characteristics must be consistent
with tracking rates of 1.2 deg/sec, peak glew rates of 3.0 deg/sec,
peak accelerations to sley of 0.1 deg/sec”, and peak accelerations
to track of 0.012 deg/sec”.

The two-axis gimbal design {for space pointing experiments) shall
have gimbal freedom of at least +120 degrees for the ocuter gimbal
and +80 degrees for the inner gimbal.

The three-axis gimbal design (for earth pointing experiments)
will have gimbal freedom of +15 degrees about the 1ine-of-sight
axis (i.e., yaw) and +50 degrees in the two transverse axes
{i.e., pitch and roll}.
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Table 3-7 Summary of EGA Design Requirement (Cont'd.)
The mechanical design must be compatible with achieving a
pointing loop bandwidth of 1.0 Hz.

The total mechanical error associated with the EGA (i.e.,
misalignments, gimbal non-orthogonality, beariqg~runout,
position encoder, etc.) shall be less than 1.5 sec (1g).

Reliability shall be consistent with a 3 to 5 year lifetime.

Nominal load characteristics are:

Mass: 20 slugs (gimbal pTus paylead)
Inertia: 100 slug-ft =~
Mass Unbalance (1g): 0.2 ft-1b {(maximum)

Mass unbalance must be maintained by suitable provision
for balanced experiment mounting.

Thermal design shall be consistent with an ambient range of
+10°C to +40°C.

Structural frequencies should be maximized to the greatest
extent consistent with the size and weight constraints.

Bearing friction and data link torques shall be minimized
to the greatest extent consistent with other requirements.
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Table 3-8 Summary of EEA Design Requirements

Functional
e Provide motor drive circuitry for experiment gimbal drive motors.
e Provide experiment gimbal control servo electronics.
o Provide Inductosyn excitation and readout processing circuitry.
e Condition all experiment gimbal and control telemetry and commands .

Performance and Design

The EEA design should duplicate, to the greatest possible
extent, the circuits developed for the star tracker electronics.

Motor drive circuit design should provide for minimum dependence
of drive torque upon position.

Motor drive circuitry bandwidth shall exceed 50 Hz.
Inductosyn processing will provide gimbal position and rate
signals over entire range of gimbal travel and all gimbal
rates. Precision data is required for rates up to 2 deg/sec
to accuracy of 0.5 s&¢ (lg), per axis.

Inductosyn data bandwidth (inciuding processing) shall exceed
100 Hz.

Electronics will provide for electronically servoing the gimbal
angles to zero without computer intervention.

Design must be consistent with a 3 to 5 year operational life
{100% duty cycle).
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budget/analysis, and bandwidth and frequency compensation requirements are defined
by the experiment gimbal servo analysis (Appendix H).

3.2.9 Antenna Gimbal and Electronics Assemblies

The antenna gimbals are assumed inactive during all operations prior to PPCS
turn-on. Activation of the antenna gimbal need not occur until acquisition of the
precision attitude reference. For the PPCS operation in low altitude, sun-
synchronous orbits, the antenna will be pointed (either command steer or autotrack)
at one of three data-relay satellites in a geo-synchronous orbit. Utilization of
any particular relay satellite during any time period will be a function of the
visibility constraints, with a period of 4 minutes alloted to the retargeting be-
tween data transmission to a new data relay satellite. For PPCS operation in geo-
synchronous orbit, the antenna will be pointed continuously at a dedicated ground
station. The design requirements are summarized in Table 3-9,

3.2.10 Data Interface Assembly

The data transfer requirement is defined by compiling all the signals between
each and every assembly. This is mechanized by use of a data list which summarizes
the signal characteristics, destinations and originations, resolution of the signal,
sampling rate, etc. The signals in the data 1ist include both in-Tine signals for
sensor input and control output, and monitoring signals for checkout and status
determination. Virtually all PPCS operational signals identified go to or from the
DCA. There is thus no need for other than DCA to user traffic and the bus control
format is also greatly simplified. Memory reload, command and telemetry, in any
configuration, do not present a significant impact. The data traffic requirement
is summarized in Table 3-70.

It is to be noted that data traffic analysis is only one aspect of the data
transfer requirement analysis. Another major consideration is the timeliness of
the data. The gyro rates, for example, consist of a message which could take
several hundred psec to transmit (at a 500 KBPS data rate). Since the gyro data
required by the software assumes simultaneous sampling of all gyros, storage registers
must exist in the gyro assembly I/0 interface (or GRA). Note also that a minimal
inter-pulse interval of 37 ﬁsec occurs from the gyro for a slew rate of 1.5 °/sec
and a 0.2 sec pulse magnitude threshold. This timing also demands a storage regis-
ter.

Similar considerations apply to experiment and star sensor gimbal drive commands
and angle monitors. Inftial analysis indicates that mechanical time constants do not
demand special timing techniques, such as distinct load and execute commands.
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Table 3-9 summary of AGA and AEA Design Requirements

Functi

ona]
The Antenna Rimbal Assembly shall accurately point in two
axes in response to motor drive signals from the Antenna
Electronics Assembly.
Provide gimbal angular position data.
The AGA design shall provide for an appropriate mechanical inter-

face with both the spacecraft structure and the antenna/communica-
tion platform with provision for alignment.

Performance and Design

The gimbals shall be designed to provide + 105 degree angular
range about an upward vertical axis.

Electro-mechanical design characteristics must be consistent
with tracking rates of 0.12 deg/sec, peak slew rates of 1.0 deg/sec,
and peak accelerations of 0.1 deg/sec?.

The total pointing error associated with the AGA and AEA shall
be less than 1 min {lo), per axis. Such a requirement assumes
maximum antenna misalignment of one min {for which correction
is not required).

Reliability shall be consistent with a 3 to 5 year life,

Thermal design shall be consistent with ambient range of +10°C
to +40°C.

The antenna configuration can be characterized as within the
envelope of an equivalent 4 ft cube gimbaled at the center of
one of the faces and gimbal axis normal to the "sides".

The mass properties of the antenna are such that the weight is
less than 25 pounds, and inertia at the gimbal cg is less than
5 slug -ft2 about both axes.

RF cabling across the gimbal will have an equivalent spring
constant of less than 5 in-oz/rad.
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Table 3-10. PPCS Data Transfer Requirements

Minor Monjtor Major Total
System Elements Cycle Bits Cycle BPS

(5 per sec) | (1 per sec) { (1 per sec)
Sensor Electronics (SEA) 189 63 225 1233
Alignment Sensor(s) (ASA} 756 72 153 4005
Experiment Electronics (EEA)} 1134 324 1566 7540
Antenna Electronics (AEA) ~ | 144 ' 54 108 | 882
Gyro Reference (GRA) 153 54 108 927
Telemetry* N | _ 10000 10000
Spacecraft Interface* 234 348 hg2
Command* 2000 2000
Total 2565 27169

NOTES:
e Estimates based on a 200 ms minor cycle, 1 sec major cycle.
e Based on six experiments to be controlled, plus the antenna.
¢ Overhead based on data transfer format is included.

o All transfer is to or from DCA; no other assembly-to-assembly traffic.

* Preliminary worst-case estimates
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3.2.117 Digital Computer Assembly

The digital computer design requirements are derived primarily from computa-
tional characteristics and storage required by the software. These computer design
requirements are developed in detail for a laboratory model test computer (Ap-
pendix K). A summary of these requirements for the DCA are given in Table 3-11.

The development of the software requirements are based upon the software
preliminary design discussed in Section 7.0. The basic computer software for
executive supervision and monitoring includes an executive, data bus control,
telemetry and command processing, on-board diagnosis, and memory load and reload.
The PPCS application software modules perform attitude determination and pointing
control.

The computational and storage requirement of these software modules is
defined in order to provide the overall computational speed and storage requirements
for the DCA. Table 3-12 summarizes the total storage requirements. Storage
requirement for the data base (e.g., the star tables, target tables, and ephemeris
tables) are also estimated. Table 3-13 summarizes the computational time require-
ments of key application software modules during the time critical path in terms of
number of equivalent add instructions, multiply instructions, and divide instructions
required for each module during a one second period.

By assigning a duty cycle and a set of execution time ratios of the multiply
and divide instructions to the equivalent add instructions, the execution time
requirements for the eguivalent add instruction, the multiply and the divide in-
structions can be derived. The duty cycle is defined as the percent of time the
computer is busy in carrying out the computations. Table 3-14 shows the instruction
execution time requirements for different duty cycles.

It is to be noted that the estimates on computational time are dependent upon
the instruction repertoire of the computer and the data word length. A sophisti-
cated set of instructions will minimize the number of instructions to be executed
for a given function. Analysis of the PPCS application program modules indicated
that the computer should have an efficient set of arithmetic instructions. Further,
the computational time is dependent on the data word. The attitude algorithm design
analysis (Section 5.1 ) indicated that the gyro software modules have to be per-
formed with an accuracy of 24-bit or better; therefore, double precision arithmetic
instructions must be provided to ensure adequate accuracy. Use of double precision
will also increase the number of instructions executed for a given calculation.

3-29



Table 3-11 Summary of DCA Design Requirements

Functional

Provide PPCS computational, data processing, and storage capabiTities
and provide appropriate interface to the Data Interface Assembly.

Ferformance

General-purpdse paraliel computer employing fractional two's
campliement arithmetic.

Data word length of 24 bits required, 32 bits desired.

Instruction word of sufficient length to decode all instructions
and provide adequate address field for direct addressability up
to at least 4K, and means to address complete memory without time
penalty.

The instruction repertoire shall include sufficient basic instruc-
tions for program control, arithmetic operations, logic instructions,
input/output instructions, and data transfer.

The execution time of the fixed point ADD instruction with index
modification of the address shall be four microseconds or jess.

The execution time of the fixed point MULTIPLY instruction with
index modification of the address shall be 32 microseconds or less.

The execution time of the fixed point DIVIDE instruction for
double precision dividend with index modification of the address
shall be 72 microseconds or less.

The computer shall have at least one hardware index register
which does not require additional time for carrying out the index-
ing operation.

The memory shall be a minimum of 8K, of modular design, and
expandible to 32K,
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Table 3-12. PPCS Storage Requirement Estimates

Element Program (Words) | Lata (Words)
Executive 1400 300
Application Modules:

Attitude Determination 1339 2095
Alignment Reference 118 42
Heading Reference 265 63
Pointing Control 652 123
2374 523

Subroutines 375
Data Base 650
Total 4149 1473

NOTE: Assumes single-precision throughout, 24 bit data

word minimum
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Table 3-13. Key Application Software Timing Requirements

Elements Iteration/Sec | Equiv. Add | Equiv. Mult. | Equiv. Div.
Attitude Determination 5 5405 670 90
Alignment Reference 30 25440 3540 180
Heading Reference 5 3005 410 50
Pointing Control 30 35850 4080 720

Total 69700 8700 1040

Table 3-14. Instruction Execution Speed Effect on buty Cycle

Instructiomluty @ele | ahe | 6oy 40%
Add (usec) 5 3.75 2.5
Multiply (usec) 40 30 20
Divide (usec) 80 67.5 45

Ratio; M= 8A, D = 18A
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3.3  SYSTEM INTERFACES

The PPCS system interfaces, both internal and external, are briefly summar-
ized in this section. The internal interfaces considered are primarily electrical
(e.g., assembly-to-assembly signal interfaces} and the external interfaces are pri-
marily spacecraft mechanical interfaces (e.g., alignment/mounting and structural
characteristics).

3.3.1 PPLS Electrical Signal Interface

The PPCS assembly-to-assembly signals are shown in Figure 3-5 at the inter-
face to the Data Interface Assembly (DIA). For ease 0% visualization, only one
star tracker (1 of 2), two gyro channels (2 of 6), one alignment sensor (1 of 6),
one'experﬂnent gimbal and electronics (1 of 6}, and the antenna are shown. Elements
not shown are assumed jdentical in all ways to the representative element shown.
Scale factor and resolution of the signals is shown as extracted from design
requirements.

3.3.2 PPCS/Spacecraft Mechanical Interfaces

Key to the overall PPCS performance is the consideration of mechanical align-
ment, fields-of-view {mounting), and structural characteristics of the PPCS/space-
craft interface. Except for the alignment sensor reflectors, primary elements for
determining attitude reference are integrally mounted on the RBA. In general,
absoTute alignment of these elements to the order of a few tens of arcseconds is
not critical. What is critical is knowledge of that alignment through arc-sec
level measurement of the appropriate sensitive axes.

For the alignment sensor reflectors (mounted at the experiment gimbal) align-
ment is relatively critical. For the transverse axis measurements, the piane mirror
must be aligned to an accuracy of 12 dec for limiting the cross-coupling error con-
tribution to 0.1 seec. Similarly, for the twist measuring system, the prism hard
mounted to the support plate is aligned to 15 sec or better. These alignments
across a (potentially) depToyed interface are clearly of concern.

Mounting of equipment for appropriate fields-of-view is a considerably less
demanding problem. Of interest are the star tracker, alignment sensor, and experi-
ment and antenna gimbals. The star tracker is mounted within the spacecraft such
that the FOV is optimized with respect to the particular orbit/mission characteris-
tics and spacecraft and environmental constraints. For Tow altitude PPCS applica-
tions (200-2500 nm, sun synchronous), several possibilities have been evaluated.
These are summarized in Figure 3-6. In one typical coﬁfiguration, the outer gimbai
axis is aligned along the spacecraft roll axis, and the mechanical FOV centered
along a line 45° above the local horizontal in the plane normal to the orbit plane
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Figure 3-6. Star Tracker Field-of-View Interface
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on the side of the spacecraft away from the sun. In another typical configuration,
the outer gimbal axis is aligned along the local vertical axis and the mechanical
FOV centered along a line 15 degrees above the local horizontal in the plane normai
to the orbit plane away from the sun. In both cases, an edge of the FOV 1ies in
the local horizontal plane. In the latter case, a total FOV of +15° x +30° is
adequate, and some further reduction in total FOV requirements may be antitipated
for some Tow altitude missions.

For geosynchronous application, a typical arrangement has the outer gimbal
axis aligned along the Tocal vertical axis and the mechanical FOV centered along
the orbit normal directed toward the north pole. Some deviation from this configu-
ration can be tolerated with relative ease, but in general-a full +15° x +45° FOV
in the nominal orientation is a good configuration.

The autocollimator elements are mounted with a clear Tine-of-sight field-of-
view to the reflector mounted at the desired reference, i.e., platform gimbal base.
Platform gimbals for earth-viewing experiment pointing are typically oriented such
that the inner gimbal axis corresponds to rotation about the orbit normal and the
boresight is nominally aligned along local vertical. The inner axis (spacecraft
attach point) and outer axis (payload attach point) provide +45 degrees of gimbal
rotation; the middle axis provides +10 degrees freedom. The antenna is mounted
to observe one of a system of synchronous data relay satellites when operating in
low altitude orbits, and mounted for direct earth transmission when operating at
geosynchronous altitudes.

Structural considerations relating to PPCS performance are essentially
limited to proper stable support of the reference block assembly and support of the
non-integrally mounted payload. In the latter case, the structure must be hollow,
light-proof, and of sufficient diameter to provide an optical path for alignment
sensing using the Alignment Sensor Assembly. The interface structure is to be less
than 10 feet in length, have tip deflections of less than 0.5 inch, and natural
frequencies less than 1.0 Hz.

A final mechanical interface is with the experiment payload. The payload to
be pointed by PPCS must have a mass (including gimbal structure) of less than
20 slugs and an inertia between 10 and 1000 s]ug-ftz. Inertias will be known within
5 percent to a set of axes parallel to the payload gimbal reference axes but
centered at the gimbal center of mass. Uncompensated momentum associated with plat-
form experiments will be less than 0.1 ft-1bs-sec. '
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4.0 SYSTEM ANALYSIS

This section presents the system analysis of key areas whose consideration
influences the total system. These areas include development of the system equa-
tions, the system error analysis, observability analysis, and reliability analysis.
The system equations are thz basis for simulation and software design., The system
error analysis provides support for budget allocation, identification of sensitiv-
ity to key error sources, andverification for observed simulation performance. The
observability analysis provides a means by which key systematic errors throughout
the system can be assured of potential calibration. Finally, the reliability
analysis is the means for budget allecation to various hardware elements, for con-
figuration/design tradeoffs, and to lend confidence to achieving three to five year

iife.

4.1 SYSTEM EQUATIONS

The major portion of the equation development effort revolved about the _
development of the PPCS simulation programs [6- 7]. Those portions of the software
considered critical for the flight system were represented by computer models of
more or less complexity, depending upon the associated error contributions and pef-
formance potential. This section presents the equations summarized in a readily
understandable form and as generally appropriate for the flight application. A
detailed derivation of these equations, developed in a more general fofm for sim-
ulation, is found in Appendix B.

The approach used in establishing the PPCS system equations was to utilize
the minimal equation configuration from the derived computer models, adding com-
plexity only where necessary to obtain significant performance improvements. In
general, the only complexity added has been additional terms to compensate for
systematic (non-random} errors, i.e., biases and alignments. The equations are
presented which perform the following functions:

Gyro Reference
Rate Derivation
Attitude Integration
ECI to Body Transformation

Tracker Reference
Star Selection
Aberration Correction
Tracker Measurement Pracessing

Kalman Filter

Local Vertical Reference
Alignment Reference
Targeting

Gimbal Steering



4,1.1 Coordinate Systems

The primary orbital and body reference frames are illustrated in Figures 4-1
and 4-2.

4.1.1.1 Earth Centered Inertial Coordinates, {z} (ECI)

The earth centered coordinate system in the coordinate system of the mean
equinox and equator of epoch. The axes are:

z; 1in the direction of the vernal equinox
z, forms a right-handed orthogonal set with z; and z;

--= - 2y -in-the direction of the earth -angular velocity - S e e e

4,1.1.2 Earth Centered Rotating Coordinates, {yS}

The earth centered rotating coordinate system has as its axes:

ylG in the plane of the equator through the meridian of Greenwich
yZG forms a right-handed orthogonal set with ylﬁ and y3G

yaﬁ in the direction of the earth angular velocity

4.1.1.3 Local Vertical Orbit Coordinates, {yl

This topocentric, horizontal reference coordinate system has as its axes:

y; Tforms a right-handed orthogonal set with y, and yq

¥, directed opposite to the direction of the vehicie orbital angular
velocity vector

y3 along the radius vector from the vehicle toward the earth center

4,1,1.4 Body Reference Coordinates, {x}

This reference frame has origin at the spacecraft c.g. and axes:

x, roll, directed forward

X, pitch, directed rightward to form a right-handed orthogonal set with
X3 and Xgq

x3 Yyaw, directed downward

4.1.1.5 Tracker Reference Axes, {xj}

The tracker reference axes define the nominal axes for the tracker when the
gimbal angles are zero. The axes form a right-handed orthogonal set such that:

xlq along the nominal outer gimbal axis

sz along the nominal optical axis
x3J along the nominal inner gimbal axis
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4.1.1.6 Autoccllimator Reference Axes, x")

This reference frame is fixed in the autocollimator such that:

xlr is along the autocollimator beam LOS
xzr in a plane normal to xlr {directed as convenient)
xar forms a right-handed orthogonal set with xlr and xzr

4,1.1.7 Reflector Reference Axes, {xt}

This reference frame is fixed'in the alignment reflector such that:

xlt is normal to the reflector surface
x,t 1s nominally aligned with x,"
xst is nominally aligned with x4"

4.1.1.8 Gimbal Reference Axes,'{xg"}

The gimbal reference axes define the nominal axes for the gimbal when the
gimbal angles are zero. The axes are defined such that:

x19" along the nominal outer gimbal axis
x,9" along the nominal middle gimbal axis
x39" along the nominal inner gimbal axis

4.1.1.9 Target Reference Axes, 1xP

These axes define the target vector such that:

x,P defines the constraint about the LOS to the tairget
x,P forms an orthogonal right-handed frame with x,P and x4P
x3P is along the line-of-sight to the target from the spacecraft

4.1.2 Coordinate Transformations

4.1.2.1 Earth Centered Inertial to Local Vertical

The real-world transformation from ECI to local vertical is determined from

the orbital elements as shown in Figure 4-1 . Define
qQ = longitude of the ascending node
j = orbit inclination
w = orbit angle = wp * Vv

= argument of perigee
= true anomaly
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It follows that

s - A 3
y yz * (4-1)
where _
01 ¢ coSa Sina 0O 1 0] 0 cosf sing 0
Byz = D 01 -sina cosa O 0 «cosi sini -sin® cost 0
1 0 0 0 | 1 0 =-sini cosi 0 0 1

The computer transformation from ECI to local vertical is determined from the on-
board ephemeris. (Section 4.1.6)

4.1.2.2 Earth Centered Inertial to Body Axes

The transformation from ECI to body axes is the output of the attitude deter-
mination computations, sz (Section 4.1.3}).

4,1.2.3 Earth Centered Inertial to Earth Centered Rotating

Universal time {Greenwich Mean Time, GMT) is defined as

aMr = 12" + gHae (4-2)

where GHA® is the Greenwich Hour Angle of the mean sun. It can be found from

GHAB = GHAy - RA@ (4-3)

where GHAY is the Greenwich Hour Angle of the mean equinox (Aries) and RA@ is the
right ascension of the mean sun of epoch, where the latter is based upon date and
time of epoch [19]. From this,

cHAY = oM - 12" + RAG (4-4)

Converted into radians, GHAY represents the initial value of the angle between the
ECI and ECR frames, by Subsequently, the product of earth rate and time elapsed
since epoch is added to obtain the current value of angle, A = by * we(t - to)‘
The transformation matrix is then

cosa sina 0

A G = -sinA cosa O (4-5)
0 0 1
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4.1.2.4 Tracker Reference to Sensor Boresight

The transformation from tiracker reference to boresight is determined by the
gimbal angles and three sets of misalignment angles:

. — p— e p—

1wy 0 || cosep sine; 0| 10 —0:21
Agx = |-eg 1 o --sineI cosBI Qi 0 1 u11
I 1
[_0 - 1 0 0 1 Ez -a, i
1 0 0 FT a3° -a20
i 0 (4-8)
1] cosg, Sing,||-oq 1 0
. 0
0 -sing, COSg, || ¢y 0 1
L M ._

4.1.2.5 Alignment Reference to Reflector

The transformation from the alignment reference {instrument axes) to reflec-
tor is determined by three Euler angles, with order of rotation such that the final
rotation is taken about the boresight axis.

1 1] 0 cosd 0 -sing|| cosy simg O
Atr = 0 cos¢ sing|l O 1 ) -sing cosy O {4-7)
0 -sing cos¢j|sine O . cos® 0 0 1

4.1.2.6 Gimbal Reference to Experiment Platform

The transformation from gimbal base reference to experiment platform is
determined by the three gimbal angles and three sets of misalignment angles. Be-
cause of the "inside-out" gimbal design, the initial rotation is taken about the
inner gimbal such that A  gn =

1 0 0 1 apy -ogp||cose 0 -sine
0 cosp sing)|-ogg 1 0 0 1 0 (4-8)
0 -siny cos¢i| o 0 1 ||sineé O cos®

1 a3 0 cosy siny O '1 0 -af,
LO -amy 1 0 0 1 afy =of 1




4,1.3 Gyro Reference Equations

The gyro reference equations include processing of the gyro outputs to de-
rive rate estimates, propagation of attitude using the derived rate, and computa-~
tion of the direction cosine matrix relating body axes to ECI.

4.1.3.1 Rate Derivation

tEach of the N_ operating outputs, Aéi, is processed to derive the gyro
"measured" rate, ii. A second order fit is made to the discrete gyro output
and differentiated to obtain rate. In this case, the rate measured by each gyro

is given by

S | o (4-9)

where AT is the period between gyro counter reset. The computed estimate of rate
about the attitude reference axes is determined as a linear combination of the N
rates derived from the measured gyro outputs. The gyro drift bias is compensated
by the addition of a constant term whose value is periodically updated,

i = BGw-b (4-10)

The matrix, G, is a 3 x Ng "geometry" matrix that relates the gyro input axes to
the reference axes and accounts for the gyro scale factors. This matrix is defined
as

-1

AY T (4-11)

[rp]
e=

where the 3 x Ng matrix v is obtained by a least squares fit to the measured nom-
inal scale factor and alignment and the 3x3 matrix, Ay, represents a small per-
turbation between the measured and true scale factor/alignment. The matrix t is
established by prefiight measurement. The matrix, AY, isndetermined through pre-
flight and/or flight calibration procedures to establish G.

4.1,3.2 Attitude Integration

The estimated rate is used in a numerical integration scheme to obtain atti-
tude, where Euler Symmetric Parameters are employed as the kinematic variables.
One may establish that

;o= %.95 (4-12)



where —_

E 0 w3 twp 4y
n - 0 w w
p = 3 £ = 3 ! 2
L Wy muy 0 Wy
i x_ _--u)] Wy ug 0 ]

If the integration period is selected sufficiently small such that @ can be taken
as constant over the step intervai, then the solution can be determined as

P+ 1 = €xp (nk AT/2) Py (4-13)

where

P = elty)

and 9, represents the constant matrix assumed on the interval [tk, tk+]]' A
simple closed form expression for exp (ﬂk 4T/2) is obtained which tends to inhibit
the truncaticn error that would normally exist in the power series representation
of the exponential. This closed form representation is given as:

exp (Qk AT/2) = f{cos baT) I + EigBEéI %]

where (4-14)

1/2
_1t~2,~2 2
b "f[‘”] +w2 +w3:|

4.1.3.3 ECI to Body Transformation

The computed Euler parameters, p, are used to generate a direction cosine
matrix which relates the attitude reference axes, X, the the Earth-Centered
Inertial (ECI) reference axes, z. This is established from the following matrix

equality.
A, i 0
2 R (4-15)
0 11



where

—-94 P "92 D]_
=P P @ p

P 3 P2 1 P2 (4-16)
2 1 Fa P3

p'l F’z 93 "94

4.1.4 Star Tracker Reference

The primary purpose of the star tracker reference is to provide a direct
measure of attitude which, when compared to the estimated measure, provides a
_ measurement residual {(error signal) for the Kalman filter. .There are two basic
functions performed by the star tracker equations; the first is control of the
star tracker including catalog sorting, star selection, and acquisition of appro-
priate target stars; the second is processing the appropriate sensor measurements.

4.1.4.17 Star Selection

One of the significant benefits obtained from using a star tracker for atti-
tude reference is the inherent flexibility in star selectioh, both in terms of
which stars are selected and the frequency between star measurements. Since the
star catalog required is small, data can be stored to include the total of stars
available through the whole mission. On the other hand, if storage is a premium,
only a segment of the celestial sphere need be stored which is periodically up-
dated,

If a relatively fixed catalog is to be used, as in a geosynchronous orbit
or where only a segment is stored, the catalog may be presorted for the particular
application using ground-based processing and stored in terms of direction cosines
relative to ECI and orbit angle viewing Timits. To make the system relatively
more autonomous, the on-board catalog {unsorted) can be stored, e.g., right ascen-
sion and declination in ECI to minimize memory. In this approach, on-board com-
putation is performed to provide a presorting of stars in terms of orbit angle as
defined by viewing constraints. The frequency of such presorting is,of course,
dependent on the orbit nodal regression rate and characteristics of vehicle motion.
At each star update, the on-board catalog is searched (e.g., on the basis of orbit
angle} to determine stars which satisfy present viewing constraints. These stars
then form the "mini"-catalog from which target stars may be selected.

Following catalog sorting to define available stars, there remains the
question of star selection., Various criteria for star selection are discussed
elsewhere {Section 5.3 ), but the baseline approach is to select that star with-
in the tracker FOV which has the greatest separation from the previous star. This
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is done by computing the dot product of each available candidate star vector with
the previous star vector, i.e.,

2172 -
Bl /ci) (4-17)

o = tan”! ((1 - ¢

-0 -
a =« a, for ¢i(

i max)

4.1.4.2 Aberration Correction

The coordinates of the selected star must initially be corrected for aber-
ration of the apparent star direction since the spacecraft velocity relative to
the stars cannot be considered negligible relative to the speed of light. If
a, (i =1, 2, 3) represents the catalog star coordinates in the ECI coordinate set,
then the apparent star coordinates corrected and transformed to the attitude ref-

erence are given by

a
Uy 3 Y
- Ba 1 a
up =\l - T Azl 2| * < Az | V2 (4-18)
a
U3 a3 Y
where v® is the spacecraft velocity, Via =¥, Ei’ i=1,2, 3, cis the veloc-

ity of light, and 82 is the inner product of ¥® * and the actual star unit vector.
The velocity, Da,, is computed from knowledge of the earth velocity about the sun
and the spacecraft velocity about the earth.

4.1.4.3 Tracker Measurement Processing

The objective of the star tracker measurement processing is to develop a
measured residual resulting from the difference between measured and estimated
tracker outputs. The estimated measurement vector, ¥, is differenced with the
observed measurement vector, }, to form the measurement residual, &y, which is
used in the Kalman filter for state vector update. The measurement quantity sel-
ected is the sine of the inner and outer gimbal angles. Thus, one must develop
expressions for the estimated measurement, y, based upon the star catalog, the
estimated attitude, and known misalignments/imperfections in the star tracker.
The measurement, §, is based upon the gimbal readout and detector output.

The corrected star coordinates, Ujs are related to the reference axes through
the gimbal angles, detector outputs, and gimbal alignments, The estimated
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measurement vector, y, is determined as

— — . _
$ine 0 0 (1 -uw 2 g _u
. I 1 X 1
y - SN ) -Up Uy Uy X ) Y3
sine 0 o —_— g
1] 2 2 3 2 1/2
— 1 -y 1 -y {1 - U7 )
L _ -

(4-19)
where &1 and &3 are the estimated values of sensor bias relative to the nominal
geometric boresight, and &2 is the estimated value of non-perpendicularity of the
inner gimbal relative to the outer gimbal. The values of &i are established through
preflight alignment and calibration and, in addition, the angles are observable
in the tracker measurements so that flight calibration can be implemented if desired.
The observed measurement vector, y, has the form

.o 2 1/2 =
) sing; + {1 - u } 63
Yy = (4-20)
. - Y2 -
singg + ]————2- 81
- u]

where 51, 53 are the measured star coordinates relative to the tracker boresight
(detector outputs) and éI, éo are the measured Inductosyn angles.

4.1.5 Kalman Filter

The Kalman filter accepts the difference between the measured and computed
star tracker variables (measurement residual) and multiplies this difference
vector by a gain matrix to obtain updates to the state vector. The Kalman filter
for PPCS attitude determination has a state vector consisting of three attitude
variables and three gyro biases:

X

50, attitude parameters

> =

x o=

B, gyro bias parameters

>

1
p
3
]
5
6



In using the Euler parameters, it is noted that one of the parameters is
redundant, being constrained by a simple algebraic relation, i.e., 912 + 922
+ 932 + 042 = 1. This makes it possible to unambiguously represent variations
in Py ( for Py # 0) in terms of variations in ey, pys and ps It follows that the
Kalman filter need estimate only the latter three variables, and thus its state
vector contains only three attitude terms. It is noted that the filter employed
for ground-based calibratiun may have an expanded state vector to incorporate the

., or gyro "geometry"

variables for calibration, e.g., tracker misalignments, &1

parameters, Qij'

The linearization of the equations as required by the filter formulations
are taken about the past filter estimate, resulting in the extended Kalman filter.
Summarizing the equations for the extended Kalman filter,

P = aPal +Q (4-21)

propagates the error covariance matrix, P, using the state transition matrix, ¢,
and the state noise covariance matrix, Q. The optimum gain matrix, K, is computed
from

kK = PHT [HPH! + R]! (4-22)

where H is the measurement matrix and R {is the measurement noise covariance matrix.
The gain matrix is then used to establish a state correction, §x, to the state
vector computed as

5X = Ksy (4-23)
The error covariance matrix is corrected through use of the gain matrix as
P = P - KHP (4-24)

and this value of P is then propagated forward at the next update period.

3

The state transition matrix is the Jacobian of XN with respect to X+
This matrix is propagated between updates based upon the computed gyro reference
attitude. The measurement matrix, H, is the Jacobian of y at tk+N with respect
to the state, x, at f,,. Derivation of this matrix follows from a relation
demonstrating how variations in the attitude variables infiuence variations in
the star direction cosines, u,, and the equations relating the us to y derived

earlier.



State noise arises principally from random noise in the output of the gyros,
atthough the matrix, Q, is also used to account for unknown state noise, e.g.,
mode] uncertainties, etc. The state noise covariance matrix, Q, is 6 x 6, where
the upper left 3 by 3 in Q is a time varying matrix which can be computed a priori.
The rest of Q is zero, with the exception of its diagonal elements, which contain
terms for the purpose of combating computer roundoff error. In the present case,
the upper left 3 x 3 is simplified by including only the diagonal elements as fixed
terms which are derived a priori based upon the measured gyro random drift.

The measurement noise covariance matrix, R, is 2 x 2 and the elements are
constants whose value is selected based upon the expected (or measured) random
noise in the measurements obtained by the detector and inductosyns. Only the
diagonal elements are made non-zero,

4.1.6 Local Vertical Reference

The on-board ephemeris, (¥, ¥), is used to establish the relationship of the
locai vertical reference frame relative to the ECI frame. This is given by

I
01 o : '

- r ' {rxvixr ' rxy -

y = ¢ 0 -1 — _) — T z (4-25)
10 o el o Jr x V|| | x V]

It is then a simple matter to derive the direction cosine matrix, AKY’ of the body
frame (and thus the desired error) from the transformation relationship

_ T -
Ay = Ag Py (4-26)
where
sz - 1is the direction cosine matrix derived from the inertial attitude
Ayz - 1is the matrix derived above from ephemeris

4.1.7 Alignment Reference Equations

The purpose of the alignment reference equations is to determine the relative
attitude of a set of reference axes not integrally located and/or aligned with the
attitude'determfnation reference axes, e.g., a set of coordinate axes referenced
to a reflector mounted to the experiment platform gimbal base. The equations
utiiize knowledge of the alignment reference relative to the vehicle reference and
a measure of the alignment of the remote (reflector) reference relative to the
alignment reference. This is a straightforward procedure of forming the appro-
priate direction cosine matrix using the autocollimator outputs, and performing

the appropriate transformations. It f011qﬁf that
4~



X1 X)

xt A. A X
2 tr Trx 2 {4-27)
t

X3 X5

where

At - is the direction cosine matrix whose elements represent deviation of
gimbal base axes from nominal orientation as measured by the alignment
sensor. Corrections are introduced into elements of this matrix to
account for estimates of alignment sensor readout bias errors.

Arx - is the direction cosine matrix relating the alignment sensor reference
axes relative to the attitude reference axes

4.1.8 Targeting Equations

The targeting equations are used to determine the unit target vectors, §3p
and Elp, relative to gimbal base coordinates. The LOS vector pointing from the
spacecraft to the target, E3p, is computed initially; then computations are made
to account for existing constraints about the LOS, §1p. The target vectors are
computed initially in the ECI frame, and transformed to the gimbal base coordinate

The general target geometry is shown in Figure 4-3. The LOS pointing vecto
p, is given by

5= I-F | | (4-28)

where  is the target position vector and r the spacecraft position vector. By
computing each of these vectors in ECI coordinates,

Py ty -

P = 1P = (4-29)
p t,-r
cJ 37 "3

and the normalized pointing vector i3p in ECI coordinates is therefore

p
X3 P
=p _ p _ 1 :
X3 X392 > . . P2 (4-30)
p <‘/p +p,S P
X33 ! RS

ECI
The vector ilp is determined by computation of appropriate vector constraint equat
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Targets for experiment gimbal pointing are defined in one of three ways,
namely: relative to earth fixed coordinates, i.e., latitude, longitude, and radius;
relative to inertial space, i.e., right ascension and declination; or relative to
local vertical coordinates, i.e., roll, pitch, and yaw. Each target is stored with
a time tag for proper sequencing, this time tag being given in Greenwich Mean Time
(GMT). It is assumed that at the jnitialization of the spacecraft real-time clock,
the initial time t, is given ’

. Y -
ty: (GMT,  GHA_ ) (4-31)

where GMT0 is the initial Greenwich Mean Time in decimal hours and GHAOT is the
Greenwich Hour Angle of Aries at t = t0 (Section 4,1.2.3). Once to has been estab-
lished, the spacecraft will maintain both elapsed time T,

T = t-t (4-32)

in seconds and Greenwich Mean Time, GMT, in decimal hours.

For coordinates defined with respect to the local vertical reference frame,
"{y}, the spacecraft ephemeris is utilized to determine the target vectors with
respect to the ECI frame. Thus, '

P - AT e T P ]
Kigp = Ay [fr (e 85 001 Xpyy (4-33)

Coordinates for pointing at a geographic target, t, are defined in spherical
Earth-Centered-Rotating coordinates in terms of geographic Tongitude, latitude and
distance from the center of the earth, i.e.,

On 4. ) (4-34)

These target coordinates are first transformed to spherical ECI coordinates and then
to the desired cartesian ECI coordinates from which the target vectors are com-
puted. For targets specified with respect to inertial space, the coordinates pro-
vided are right ascension and declination. This is already in a form for direct
computation of the target vector in the desired ECI coordinates. '

The target vector coordinates relative to ECI, R?z}’ are in turn transformed
relative to the gimbal base reference frame, x9N,

_p _
X = A A =P (4-35)
x9M L N S TR TS



where

sz - is the inertial attitude direction cosine matrix
A . is the alignment reference direction cosine matrix
X%
A Nt - is the alignment (known) of the gimbal base reference relative
x9"x to the alignment reflector reference

4.1.9 Steering Equations

The steering equations utilize the target vector coordinates defined in the

ge® 9ge and Vgc?
such that the appropriate experiment axes are precisely aligned with the target

gimbal base reference frame to generate gimbal angle commands, ¢

axes, The ultimate aim is to determine the gimbal angle commands with compensation
terms accounting for known misalignments in the gimbal and readout. The detailed
equations for accomplishing this are algebraically complex and are left for -
detailed development elsewhere (Appendix B}, However, since all the misalignments
can be considered first order effects, the nominal values of gimbal angles differ
only very little from the actual values. Therefore, there is some advantage at
this point in computing the “nominal" values of the angles, assuming all misalign-
ments are zero. This provides insight into the approach and is useful in main-
taining the correct quadrants in the more complex equations. Note that only those
terms of significance for compensating misalignments are included in the on-board
implementation,

In order to point at the selected target, the reference axes fixed in the
experiment must coincide with the target axes. It follows from the targeting
equations that

=P +an
X1 X (o-36)
=Pl L -gn -36
X2 Cn X2
- p -an
X3 *3
where _
c, =|xP '
n l: {xg”}_"
Thus,
=P _ n =gn n -gn n =gn
X K+ ey X3+ )y K (4-37)
and
=P . .0 =gn n =an n -gn )
Xs C31 X] *+ C3p X5 + Caq X3 {4-38)



The matrix, Cn, also can be defined in terms of the gimbal angles such that

N S el
C, & (Ci5) & opdpvy (4-39)
where

oo

cqy = cosé, cosy,
¢, = cose sin

12 n ST,

n _ .

n o _ . X ,

Cyp = cosy, sins, cos¢, + siny, sing,

noo_ . . _ .

C3p = siny sine, cos¢, - cosy, sine,

n -
€33 Cos6, COS$,

If follows directly from determining the elements c?j that

n
- 1 {512 3

1}Jn = tan “n (4 40)

13
Bn = t«'-.\l'l—.I “'"ﬁ—!i'_ {4-41)

(C'”/COSIPH)
n . n
4 feqq sing - co, cosy

¢ = tan 1 {31 SN, - €3p COSU, (4-42)

(cga/cosen)

For LOS pointing only, the vector iap is given in nominal gimbal base coordin-
ates and only two gimbal rotations are required to align the desired pointing axis
with i3p. The yaw gimbal angle is therefore set equal to zero, i.e., ¥, = 0.

From the previous equations, one obtains

n ,

¢y = sine, cose,
no_ .

C3p = -SIMgy, (8-43)
n

Cgq = COS8 COSp,
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50 that

-1 {3
8, = tamn T (4-44)
€33
and
=1 3z
by = tan (4-45)
(c33/cosen)
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4.2 ERROR ANALYSIS

This section presents the PPCS system error analysis. The objective is to
perform an authoritative error analysis without resorting to Monte Carlo simulation
of the system. Since the PPCS system is complex, a major task in this respect was
to select a suitable approach. Direct addition of the variances of the errors with-
out regard to the details of how these errors propagate through the system can be
utilized for gross estimates of performance. These results are presented in an
initial summary of the system errors. However, it was felt that a weighting of the
individual errors according to how they directly affect the attitude determination
and experiment gimbal pointing appeared essential in development of a detailed system
error analysis.

This has resulted in the development of a comprehensive sensitivity and covar-
jance error analysis from which a flexible digital computer program has been
developed {Appendix E) which computes single-axis pointing errors and attitude deter-
mination errors using as inputs the uncertainties of the individual system error
sources. This analysis is summarized in detail, from discussion of the approach
to presentation of results. The detailed definition of hardware error sources and
the algebraic details of developing sensitivity matrices are found elsewhere
(Appendices C and D, respectively).

4.2.1 Error Summary

This section presents a summary of hardware and system errors which are com-
bined by the simple addition of variances to establish a working estimate of system
errors. The total system errors are presented in Table 4-1, which shows both the
allocated budget and the achieved performance. For all cases, the budget is met
and overall performance is 20% below budget. The hardware and software errors
summarized there are expanded in Tables 4-2 through 4-6 to show the details of
this error analysis. The values shown for the error sources are discussed and
derived in the design analysis and hardware design sections of this report and
elsewhere [12].

The pointing errors considered for PPCS are exclusive of those contributed
by ephemeris error. Even though not a part of the PPCS error budget. the ephemeris
errors must be considered as to the effect on system performance. It is interesting
to note that ephemeris errors influence the pointing accuracy differently, depending
upon which pointing mode is considered. For example, space pointing of experiments
to targets defined on the celestial sphere is independent of ephemeris. Furthermore,
the accuracy of pointing relative to local vertical is much less sensitive to
ephemeris errors (by the ratio of altitude to orbital radius) than pointing at
landmark targets (i.e., latitude, longitude, radius). This latter point becomes
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Table 4-1 PPCS Error Analysis Summary

Error Source Budget Allocation Uesign Capability
Magnitude (1) Variance Magnitude(1s} Variance
see) {sec?) (set) (sec?)
Star Tracker 1.40 ' 1.96 1.14 1.30
Sensor Electronics 0.50 0.25 0.22 0.05
Gyro Reference 1.60 2.56 1.35 1.83
Alignment Sensor 1.60 2.56 1.34 1.80
Reference Block - 0.50 0.25 - 0.50 0.25
Experiment Gimbal 1.50 2.25 0.98 0.96
Experiment Electronics 0.50 .25 0.22 0.05
Data Processing 1.70 2.89 1.51 2.26
TOTAL {RSS) 3.6 2.92
(=0.001 deg) (=0.00081 deg)
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Table 4-2  Star Tracker and Electronics Error Analysis

Error Source Qontribution
s (sec) o2 (éEEZ)

STA

SSU Bias/Stability

Thermo-mechanical Stability 0.18 sec (lo) 0.18 0.033
Electronic Bias 0.4 <ec (lg) Q.4 0.16
$SU Noise Equivalent Angle 0.35 sec {1o) 0.07 0.005
SGU Alignment Uncertainty
Runout 0.5 sec (1o) 0.5 0.25
Perpendicularity 0.5 sec (lo) 0.5 0.25
SGU Thermo-mechanical Stability
Stress Relaxation 0.17 sec (1o) 0.17 0.029
Thermal Shifts 0.2 gec (lo) 0.2 0.04
Inductosyn (Meqhanica]) 0.73 sec (1o} 0.73 0.53
TOTAL (RSS) 1.14
SEA
Inductosyn Processing
Bias Stability 0.07 sec {lo) 0.07 0.0049
360 © 0.04 sec (lg) 0.04 0.0016
720 8 0.2 sec {lo) 0.2 0.04
Resolution 0.23 sec (lo) 0.065 0.0042
TOTAL (RSS) 0.224
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Table 4-3 Gyro Reference Error Analysis

Error Source (10) Contribution (1)
g (set) az(ﬁﬁz)
GRA
Drift Bias Compensation (%) 0.002°/hr 0.6 0.36
Random Drift (5 min integration) g0.003°/hr 0.9 0.81
Scale Factor Stability 100 ppm 0.72 0.52
IA Alignment Stability 10 s&¢ 0.36 0.13
Gyro Pulse Weight 0.1 set 0.1 0.01
TOTAL (RSS) 1.35

(1} 5 minute update period, bounding value
Nominal 1imit cycle, 0.02 deg/sec

(2) Error in Kalman filter estimate
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Table 4¥4 Alignment Sensor Error Analysis

Error Source
!S’a:, 1g)
ASA
Systematic Mech/Elec Errors
{Uncompensated)
Transverse Axes 0.246
Twist Axis 0.877

Random Mech/Elec Erraors

Transverse Axes 0.1

Twist Axis 2.06
Stability

Transverse Axes 0.081

Twist Axis 0.256

TOTAL (RSS)

{1) Twist Axis Error Distributed over 3 axes
(Twist Axis only Errors = 2.25 sec (1a) )

4-25

Cpntribution(])
o(Ee)  ol(sEed)
0.246 0.0861
0.51 0.26
0.1 0.01
1.2 1.44
0.081 0.007
0.148 0.022
1.34



Table 4-5 Experiment Gimbal and Electronics Error Analysis

Error Source Contribution

(sec,la) g(sec) UEQSEEZ)

EGA

Systematic Errors (Uncompensated)
Alignment 0.25 0.25 _ 0.062
Runout 7 0.3 0.3 0.09

Random Errors

Runout 0.17 0.17 0.029
Thermal Stability 0.5 0.5 0.25
Inductosyn {Mechanical) 0.73 0.73 0.53
TOTAL (RSS) 0.98

Inductosyn Processing

Bias Stability 0.07 0.07 0.0049

3608 0.04 0.04 0.0016

7208 0.2 0.2 0.04

Resolution 6.23 0.065 0.0042
TOTAL (RSS) 0.224
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Table 4-6. Data Processing Error Analysis

Error ' ' Source Contribution
U(S‘a:) 02(5-;02)
Star Catalog/Aberration Correction 0.1 sec 0.1 0.01
Finite Word Length 24 bits (min) 1.0 1.00
%F?ﬁ?ggt;g;p?gi;:riod) 0.1 %%% (bound) 0.5 0.25
Pointing Command 1 set 1.0 1.00
TOTAL (RSS) ) 1.5

Note: Filter related performance accounted for in allocated hardware budgets,
e.g., Tracker noise accounted for in STA error analysis, gyro bias

compensation and random drift in GRA error analysis.
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apparent from the geometry shown in Figure 4-4, where this somewhat simplified

case considers only in-track ephemeris errors, Ax. To demonstrate the effects

which ephemeris errors contribute, relative to PPCS errors, it is most meaningful

to consider angular resolution. This is sunmarized for low altitude orbits in
Figure 4-5, Note that ephemeris accuracy on the order of 0.1 n.m. is consistent
with PPCS accuracy goals for local vertical pointing and errors up to 0.25 n.m.
(«0.5 km) are not inconsistent with PPCS requirements. On the other hand, ephemeris
errors must be on the order of 100-200 ft to be consistent with PPCS accuracy
requirement/goals for pointing at a given latitude, longitude for low orbital alti-
tude. From a somewhat different perspective, this also says that PPCS accuracy is
consistent with ground resolution of 100-200 feet. Developing an on-board ephemeris .

~approach was speéifica]ly'not-part of the scope of PPCS, but it is clear that the

question is an important one as regards overall operation and performance and must
be carefully addressed.

4,2.2 Covariance Analysis

4,2.2.1 Approach

Development of the system error covarance is based on establishing the sen-
sitivity of the attitude determination and pointing angle commands to the individual
system error sources. In general,any system variable, x,can be expressed as

X = X+ 86X {4-46)

where x is the true value of the variable, X the estimated value, and éx the error
in the estimate. Let now

9 _ T 4-47
Y (¢g: eg: \bg) ( )

be the three gimbal angle pointing commands and let
e = (e, e e )T (4-18)

17 722 *="* %

represent the individual error sources in the system, e.g., misalignments, biases,
scale factors, etc. Performing an error sensitivity analysis one may express the
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errors in system pointing by )
. s vd = S e - {4-49)

Let the covariance matrix of the pointing error, ﬁYg, be
- 9 9y T
Pg(k) E[a‘rk (mrk ) ] {4-50)
and the covariance matrix of the system errors, &§e, be

R(K) = E[5ek (aek)T] (4-51)

where E denotes the expectation operator and where the subscript k denotes "at time
tk.“ Then clearly

R(K) ST (4-52)

Pg(k) = 3§ "

k
and given S and R one can determine the gimbal angle pointing error covariance
matrix,Pg. The diagonal elements of P_(k) are the variances of the three single
axis pointing errors. [t is assumed that all the components of aek are Gaussian
distributed random variables, Thus, 5Ykg is also Gaussian, and the probability that
the pointing error will not exceed its standard deviation (1o} is 0.6826. This
assumption seems to be quite justified for almost all error quantities involved

and, in general, little error from this interpretation of the variances is expected.

The particular approach taken here is to partitibn the § matrix into four
submatrices as follows:

| | {
g =
5Y [32 : S-I : S0 : SLOS] se {4-53)

where 52 indicates the sensitivity of the pointing error to errors in the pointing
control system, S] the sensitivity to alignment sensing errors, SO the sensitivity
to attitude determination errors, and SLDS the sensitivity to the target LOS vector
in ECI coordinates. Note that SLOS reflects the sensitivity of the overall pointing
system to ephemeris errors and errors in geophysical constants.

Since the gimbal angles are, in general, not linearly related to these error
sources the matrices Si consist of partial derivatives evaluated at nominal or
a priori estimated values of the current state of the system, The term '“state"
is to be interpreted in the wider sense, comprised not only of the body rates and
the vehicle attitude, but also including the star vector of the currently tracked
star, the nominal pointing gimbal angles, and the nominal target LOS vector.
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Hence, S = [52| S]I SOI S_ps Jvaries with time according to the time evolution of
the system state. Mathematically speaking, the matrix S should also depend on

the expected values of the system errors, e. But virtually all error quantities
are so small that they may be considered first-order engineering effects and thus
they contribute only second-order terms in the gimbal angle errors. Therefore,
they can be deleted (set equal to zero) in almost all cases leaving the error sen-
sitivity matrices independent of the a priori estimated values {calibrated values)
of the system errors.

The covariance matrix, R, can then be expressed as

where P2 is the error covariance matrix of the pointing control errors, P1 is the
error covariance matrix of the alignment sensing errors, PD is the error covariance
of the attitude determination, and PLOS is the error covariance of the targeting,
The entries of P2 and P1 are the lo uncertainties of the pointing control and align-
ment reference, respectively; the entries of P0 depend on the accuracy of the atti-
tude determination system; and PLOS on the accuracy of the target vectors (including
the effects of ephemeris}.

4.2.2.2 System Sensitivity

This section presents a summary of the system error sensitivity. Detailed
development of the sensitivity matrices is found in Appendix D. The single-axis
pointing errors,

&4 A -
¢g A ¢g ¢g
) (4-55)
§6_ A §_ -
g = %" %
5Wg - lIbg = q‘}g

are related to the uncertainties in the system errors through the expanded sensi-
tivity relationship shown below.
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s0q | = ES A R A |SLOS] sy (4-56)
5 S — T N et 56
g 52 S] tr
60’}"
Gpo
P
6)(3
where
ag = (a51, %o “sS)T gimbal "servo" error (dynamic, static, DAC,
Inductosyn}
a, = (“22’ am)T = last gimbal rotation misalignment
o = (“mT’ am3)T = middle gimbal rotation misalignment

T . . . . .
oy = (af1, “fz) first gimbal rotation misalignment

(at], Upos at3)T = reflector misalignments

- T .

8y 7 (¢e, Bgs we) alignment sensor angle measurement
T _ . . .

@, = (ar1, g “r3) = alignment sensor misalignment

)T

(£, ns C spacecraft attitude

o
I

T

x3p = (xg], xgz, xg3) normalized LOS target vector (ECI)

It is noted, however, that although the sensitivity of pointing error to
attitude determination error is shown, the sensitivity of attitude determination
error to star tracker and gyro error sources has not been explicitly developed.
This is done separately for several reasons, including clarity. First, it is use-
ful to develop a separate sensitivity/covariance analysis of attitude determina-
tion to particularly understand those errors and to complement the simulation
capability. Secondly, since the attitude is periodically updated using the star
tracker and propagated between star updates using only gyros, it is necessary
to develop separate sensitivity matrices for each condition. Finally, the updates
are obtained using a Kalman filter which plays the key role in attitude determin-
ation. This, of course, makes an error analysis for attitude determination a
different task,
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To perform a Kalman filter covariance analysis with six states {drift bias
and attitude) seemed undesirable since: (i) this is available through use of the
attitude determination simulation; {ii) there are several more error sources besides
gyro drift rates and tracker observation noise which have to be accounted for, and
the error covariance matrix obtained from the filter would not reflect these errors.

To perform a covariance analysis when all exiéting error quantities are to
be estimated by the filter (if they are observable) again would duplicate the sim-
utation and would also be unrealistic in the sense that the on-board filter posses-
ses only six states. Thus, the best way to handle the filter in the error analysis
was to account implicitly for its existence. This is done by attenuating the
-uncertainties in the gyro drift rate bias and the tracker observation noise accord- -
ing to the filter performance as observed through simulation, i.e., to modify the
variances of these errors by the ratio of the a posteriori to the a priori variances
of the filter,

The form and characteristics of the attitude determination sensitivity rela-
tion are developed. Between star tracker updates, the error sensitivity in the
attitude at t = tk+N can be expressed as

0
6pk
0
8o = S I(k + N, k) | —-==-- (4-57)
where N is any positive integer and where
ﬁpko = the attitude error at tk
and
0
sh
9
ka(N) = &y (4-58)
ng(k+ N - 1)
where
5bg° = uncertainties in equivalent gyro drift rate
§Y = wuncertainties in gyro input axis alignments/scale factor
nGo = equivalent gyro noise

The gyro uncertainty, 8Py » is a function of the step size, N, since it in-
cludes the gyro random noise which acts as an independent external input and must
be summed over the N integration steps. The remainder of sp contains the uncertain-
ties in the gyro drift rate biases, gyro misalignments, and gyro scale factor
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instabilities. Since bg0 is part of the on-board filter state vector, once the
filter has converged the a priori variance of bgo will have been reduced substan-
tially. To account for this in the present error analysis, the uncertainty in
gyro bias is modified to

0 0

sh = b (4-59)
g "o Vg

where v, is a scalar multiplier reflecting the attenuation of the bias error due

to Kalman filtering. By making Ny, @ scalar it is assumed that the variance of each

component of $b ¢ is equally attenuated, a guite reasonable assumption. In this

case ubz is the ratio of the a posteriori variance of Gbgo {when the filter has

converged) to the a priori variance of abg° {when the filter was initiated).

The errors in the star tracker consist mainly of misalignments and readout
errors in the sensor and the inductosyns, where the latter errors include observa-
tion noise. One can proceed similarly as before and derive an error sensitivity
matrix,SAU,which relates the errors in the star tracker to the attitude determina-
tion error at attitude update time. The error incurred at attitude update is not
completely independent of the gyro errors, however. This is because one star tracker
observation does not yield enough information to determine the vehicle attitude.

At least two observations are required and they must be connected in time through
the gyro derived attitude. Since, for reasons stated earlier, the Kalman filter

is not treated explicitly, it is assumed that whenever a star tracker reading is
taken an attitude update is obtained by processing the present star tracker reading
with the most recent previous star tracker reading. A fundamental assumption made
is that the two readings yield linearly independent star vectors. This processing
of the STA data resembles the Kalman fiiter used in the actual system. It may be
regarded as an "extremely finite memory filter" since it combines only the last
preceding star tracker reading with the present reading, while the Kalman filter
makes use of all the past information thus refining its estimates.

The sensitivity of attitude determination to GRA and STA errors when taking
star tracker readings at update periods is given by

89 4y
0 4-60
Soien = Sau | % (4-60)
§p, (N)
Define the tracker error as
- I I 0 o 0 I,T
§q = 6(&1, Ggs G715 Gp 5 By s Gg s Ep s E] ) {4-61)
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where

o
1 SSU errors and SSU misalignments
o
3
a I
]I Inner gimbal misalignments including bearing run-out
*2
a0
20 OQuter gimbal misalignments including bearing run-out
“3
SIO Quter gimbal Inductosyn read-out errors
"eII " “Inner gimbal Inductosyn vead-out ‘érvors

The tracker error vector, q, has a number of components which contain an addi-
tive observation noise term. Again, in.the flight software, the Kalman filter will
substantially reduce the effects of this observation noise by essentially making a
Teast square fit to the observed measurements. Thus, let in general

5q, = 6q,° + u_n (4-62)
k k qg qk
where nqk is the high frequency noise vector associated with the star tracker cbser-
vations and n_ reflects the attenuation of the noise by the filter. The cross-
correlation between p and q is zero at all times.

4,2,2.3 Covariance Matrix Development

Development of the covariance matrices for pointing errors, although tedious,
is straightforward. Development of the covariance matrices for attitude determina-
tion 1s much Tess so, Consider first the period between updates, where error is a
function only of the gyro related errors and attitude determination history. The
associated error covariance matrix is given by

0
*k TV T
PeliN} = {) -—oee [“ko P apy (N)] (4-63)
5pk(N) !
which implies that
|
P oli) | P g (K
pG(k;N) SO ? ________ (4-64)
PTo (K) | P (KsN)
eop a1 P



Using the sensitivity matrix,

- . T
Ppo(k+N) = SAI(k+N’ k) PG(k,N) SAI(k+N’ k) (4-65)

whenever t, . does not correspond to an attitude update at which a star tracker
reading is taken. These lazt two equations constitute a recursion relationship by
which, given PDO(O) and the other submatrices of PG at t,, the covariance matrix
Ppo(k) can be computed for all k >.0. It then follows that

i ) 1 7]
Pbgoi 0 1' 0
_____ :...._..._r----_---_—
P (k;N) = G P 0
p by (4-66)
————— r—--—:————ln——-u-—-
0 10 i Pyo (ki)

where for drift bias uncertainty, abgo, alighment and scale factor, &, and random

drift (noise) N,

0 0 0,7
Pbg = E[%b Gbg ub(ﬁbg } ] (4-67)
_ T
P, = Elov(enT] (4-68)
and
P olksN) = E[NGO(k+N-1) NGO(k+N-1)T] (4-69)
NG
Next the submatrix, P 0 (k), will be evaluated. It is established that
e P
_ o0 ~ 0 0
P . (k+N) = ¢, (kN, k} P, (k} + ¢, (k#N, k) P_“(k) {4-70)
0 1 0 2 p
£ P PP
where | ' 3 g 3
- ! |
PP p Dy | P ¥ I
and

i}

0 - . .
Pp (k} = ;Pp(k,N) with PNg(k+N-1) 0% (4-72)
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which constitutes a recursion relationship by which Ppgp(k) can be computed for any
k > 0. HWithout Toss of generality it may be assumed that

0) = 0 (4-73)

These expressions are thus used to propagate the error covariance between tracker
updates.

0 at the time of a star

It remains to establish the covariance matrix of p
tracker reading/filter update, i.e., Ppo(k+N). The covariance wmatrix of the asso-

A;iated gyro and star tracker errors is given by

894N
_ _ T T T,
PoplkeN) = E{| &gy [Bq ke S 8Py (N)] (4-74)
5p (N)
From this, it follows that
_ T
Ppo(k+N) = SAU PST(k+N) SAU (4-75)

which yields the error covariance matrix of po a

with a star tracker observatfon,

t tk+N when the attitude is updated

4.2.2.4 Covariance Analysis Results

Error sensitivity matrices and standard deviation of the attitude determina-
tion and pointing errors were developed using the covariance error analysis compu-
ter program. The error socurces which correspond to the results are those developed
in Section 4.2.1. The results are plotted in Figures 4-6 and 4-7 for attitude
determination and pointing, respectively, with data taken over a 30 minute period,
Excellent performance is achieved, corroborating the numerical results of both the
rough analysis ahd simulation.

It can be observed that the attitude determination ervors are quite uniform
in the three vehicle axes. The reason for the uniformity is the particular star
configuration used for the attitude updates which does not favor any one particular
axis. The vehicle 1imit cycle and orbit rate also have an observable impact on
the system performance due to gyro errors. This state dependence is clearly
visible on the graphs through the alternating slope of the error increase during

4-38



3
s

s

s

il
e

I
i3]

it

131

T
1A
junadSER

S

1

inutes)

ime (m

HT

THT
H¥ETT

rim
T

T Ean an

fiRasaut

il

(minutes )

ime

Jeet i te st 1]

T

-4
H
il

oh
pasdTacsf
bt g =
[eEzaRETR! PR
il I
EpraTga
- f

SEFTSTIIREETR] S v)

zzanialiot]

I

History

pnation Error Time

tude Determi

i

Att

.

4-6

igure

F

4-39



:
ok
e RaN s g
T T ST
7 4 =
bt I ;
: d 3
th BT TR &
ant aE T L
1 2 L
= = Sl s
— i it - Elpet 3 il :
: o+
3 s HE : et o S
i It S sEi i o SRR :
i I H== A on
i 2 rg R = i ;
= " i w
2 HH - i T
T w : T .& i
= = = : R o
5. = O Lhpt t i nv.
l._ S , A
8 ] o
i @ I
E e
- - - § “M1\4
T E s baas =
bk — BEET
=
[1H ar v
L= Tt M
= Ex
1 4
T -
I M
B iE
HH
g ] it JESEE
. it
i A28 maLk
Ginsonissitsi:
TAm[ EE
1
1
x THTH
T H

tory

Painting Error Time His
4-40

-7

Figure 4




the intervals between updates. The vehicle 1imit cycle reverses, in this case,
in phase with the star tragker-updates (every 5 minutes) and therefore adds and
subtracts alternately from the orbit rate.

The error sensitivity matrices for several update periods are provided in
Tables 4-7, 4-8, and 4-9. In general, the following observations were made
on the sensitivity matrices, being careful not to confuse sensitivity with error.

o Attitude determination errors between updating are most sensitive
to gyro drift rate bias and gyro noise, in that order. The sensi-
tivity to gyro misalignments and scale factor instability appears to
be low. However, this is solely caused by the fact that the body
rates are rather small (observe the state dependence of the error).

e Attitude determination errors at update time are again most sensitive
to gyro biases and noise since the gyros must be used to interrelate
the star tracker measurements taken at different times. The effect
of the remaining error sources seems to be very heavily dependent on
the location of the tracked stars, particularly on how much new
information can really be gained from looking at the second star.

When the angle between successive star vectors was very large, the
sensitivities to individual SSU and gimbal misalignments and Inductosyn
errors varied between 0.2 and 0.6. System improvement by the improve-
ment of Gne particular misalignment over another was not indicated.

The STA errors seem to act in concert, some of them affecting one
vehicle axis more than another.

o The sensitivity of the pointing angles to servo errors and to experi-
ment gimbal and alignment sensor misalignments varied between zero
and unity and, as expected, most misalignments acted differently
on the three different gimbal angles. The sensitivities are depen-
dent on the nominal pointing angles and some of them increase notice-
ably as the gimbal angles grow in magnitude. It is interesting to
note that the sensitivities to mounting misalignments and errors
associated with the alignment sensor are always close to unity
(examine the sum of the squares per category).

e The sensitivity of the pointing gimbal angles to attitude determina-
tion. errors was observed at about unity per axis, when the attitude
determination error was expressed 1in Euler angles. (The sensitivities
are around 2.0 for Euler symmetric parameters.) It is noted that
cross-coupling does definitely exist. :

® As expected, the sensitivities of the pointing angles to variations

in the Tine of sight vector are also around unity, depending on the
relative target location, :
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Sensitivity Matrices, T =

LMU SENSITIVITY MATRIX

=
SAl=

9+7530E-01
-5.2119E-02
'5.3106E-03

-5.2067E-02

-1+327T6E~03
1.3276E-03

-2.0827E-01
-5.3106E-03
~5.2119E-02

300 .000

5.2067L-02
5.2058E-D02
-5.3044E-03

9.7530E-01"

'1+3261E-03
-1.3261E-03

-5.2067E-02
5.3044E-03
5.2058E-02

STA SENSITIVITY #ATRIX

T=
SAU=

9+6036E-01
9.+0NS0E-D1
Ae1872E-01
2.0913E+02
-5.9977E-02
6 «8057TE+00

1.3767TE+00
1.2909E+00
7+0711E-01
4+1241E+02
-4, 98T2E-02

300 ..000

=2.3442E-01
-2.3442E-01
-6.1372E-01
=-1.4024E-03

7.3238E-02

=1.40565E+00
=1 +4065E+00
=7-0711E-D1
~1.9277E-01

1-4443E-01

1.1722E+01 |

1.87B9E+00
1.5743E+00
3+5355E-01
P 4613E+02
-2.0636E-02
6+7691E+00

=1 +87T53E+00"

-1.8753E+00
-3.5355E-01
-1+4040E-01

B+6197E-02.

Table 4-7

2.0827E-01 =1+4882E+02
~5.2119E~02 1.3276E-03
5.3106E-03 -5.0000E+00

S5+2067TE=-02 =3.7911E+00
-1.3276E-03 ~5+2119E-02
1.3276E-03 0=

300 sec.

3.7911E+00
~1.3261E-03
0. ‘

~1 «4882E+02
4+2058E-02
=5.0000E+00

1+5164E+01
1.3276E-03
Os

3.7911E+00
-5.2119E-02
O‘o

9.7530E-01 -1+5164E+01 -3+.7911E+00 =1.4832E+02

~5+3106E-03 =-1.3276E-03
~5.2119E-02 QO

1+3261E-03
Q.

-1.3276E-03
-5.0000E+Q0

9.0050E-01 -3.3374E-01 -1-3034E-0|‘—3-8638E;Dl

-1.7678E-01 -58.7500E-01
=1+7673E-01 -8.7500E~-01

1.4008E-03 -1.4024E-03
=7.3153E-02

-1+7678L-01
~4«0045E+00
=5.9977E-02

O
-1.7126E+02
5.9907TE-02

7+32368E-02 =6+7658E~01 ~5.9445E+00

Le2909E+00 -4-TS44E-01 4+4640E-D1 =1+4167E+0D

-2.1213E+00 -1.0000E+0D
-241213E+00 -1+0000E+00

1.9254E-01 ~1.9277E-Q!
~1+4426E-01

1«57 43E+00 -5.8347E-01
~1.+.5026E+00 =5.0000E-01
-1.5026E+00 =5.00Q0E-01

1.4024E-01
-5.6096F-02

~1.4040E-01

4-42

-2.1213E+00
~5.5044E+02
~4.9872E-02

6« 3209E-01
-1+5026E+00
~4.0091E+02
-2.0636E-02

0
-1.4241E+02
4.9814E-02

1.4443E-01 -1+3545E+01 -5.5809E+00

=1 «8568E+00
D«

-5.8927TE+Q1
2.0612E-02

B«6197E~02 -1.4035E+01 -2.5112E+00



POINTING SENSITIVITY
300.000

T=

5a=
1-0000E+00

~3,9571E-02

~1.0007E+00

O -
~1.2387E-01
~3.2903E-02

0
-9 .97 28E-01
-3.9906E-02

S1=

-7 .0758E-01
-6.5692E-02
6+3646E-01

S0=

-1.26%3E+00

-5.5908E-02
2.1435F=-01

SL.OS=
D.6R43E-N2
¥ +2230E-01

-1.2451E-01

Table 4-7.
MATRECES
-O. O.
g -1.0034E-01

9.3371E-02

1 «0DODE+OD
-1.,0000E+00
-9 9565E-01

0«
0.
2 «33B1E-03

~9.3371E-02
9.956BE=-01
~9 +3381E-03

1.0848E-01
=2.0383E+00
1.3723E~-01

-1.0080E+00
(o))
[

L T 0THYE-D]

0.
Da
He5692E-02

1.0000E+00
-1.0050E+00
TT7T715E-01

-7 .0753E-01
-6+5692E-02
=T +77T7T5E-01

~4.147T31-01
—1.207RE-0
-1 .997TAHE+00D

-1.1869E-C1.

0.
d.

{(Cont’d)

=1..0000E+010
-1.0050E+00
-9.3371E-02

(Je
0. _
F+F564E-01

Dl
~1.N0034E-01
~9.3381E-03

-7 «0758E-01
-6.5692E-02
=7.7775E-01

1.2431E-02"

OW
-7 «0758E~-01
-2.9230E-01
0
-6.5692E-02

1.2451E-01

-1.0000E+00

6+3646E-01

.3371E-02

-9+9568E-01.

3.33%1E-03

REPRODUCIBILITY 6F THe

ORIGINAL P
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7.0738E-01
&+5692E-02
-6+3646E-01



(MU SENSITIVITY MATRIX

T=
sAl=

F.9454E-01
5.0683E-02
~-1+3508E-02

5.7945E-02
1-0138E-03
~1.8455F-03

-1.0192E-01
1 -3508E-02
5.0683E-02

T=
SAl=

-2.0301E~-0}
=2« QUTTE=O]
6.823TE-02
3.9593p+01
—4.6316EL-008
5.7417E-01

~Ha9BaF-uE
=551 0K-Ux

"1 .84H6R-UL

taUu30D4E+0 L
Pe1590L-02
Z2e32a45K+00

=L el LU
=T et2vTb-UL
2.2142E-01
~8+3415E+01
-2.5820E-02
'Qo?&?@E*OO

&£00.000

-6.3536E-02
-5.0624E-02
1.3493E-02

9.6938E-01
-1.0126E-03
1 +8434E-03

4+1175E=-02
-1.34%3E-02
~5.0624E-02

STA SENSLIIVITY #MATRIX
600 .000 ;

~2.5617E-02
-2.56172-02

9 OBl -02
2e2430E=-02
=1« 397 3E~02

-3.4617K-01
=3e46171L=-01
PaS48k~G1
=449 301-US
“tedhA =t

—3.2IBIEZUIL
“SeRIBlE-U
=~2.0307E-01
&+2397E-03
2.3212E-02

Table 4-8
Sensitivity Matrices, T = 600 sec.

1.0751E-01
5.0683E-02
-1+3508E-02

-4.6765E-02
1-0138E-03
~1+.84553E-03

2.9454E£-01
1+3508E-02
5.0683E-02

-2.0077C-01
-3.1308E~01
-2+ 3357E-0Q1
~2.9446E~02

1.39576-08

"fJ-b"?]Uﬁ."Ud
=5.11920K-03

e he TEIFL-UG

4+ 2A43-03
24572 -02

=f el 23004
red234-U3
2.1786E-03

-6.2325E-03

-2.917T8E=0Q2

-1.4472E+02
~1.0138E-03
-5.0000E+00

-2 .39 48E+00
5.0683E-02
D

“3+8573E+01
1 +B4SSE-D3
()

-3.0121E-02
3.29200E~02
3.29000-0%
PeF4qHUE -2

-1.3273£-02

—fedddRi-03
deta9ic-i1
Je1491p=k1

-4« d 3V E-03

~2+4621E-02

=l subITL-UZ
=36l 540Ul
-3.7540E-01
6+2397E-03
2.9212E-02
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2,89 ABE+00
1+.0126E-03
0.

-1.4472E+02
~5.0624E-02
=5.0000a+00

-5.2698E+00
-1-8434E-03
e

=3.9061E£-02
=R.9357E-01
-3 .41 830E+01
~4+63165-03
—3+0668E+30

~De6g32-01
~e 19 IE-U3
b4 iunritl
Pa 990w
~BsPBORE-UY

~2Zeoholr-ul
2.1786E-03
-1.7317E+01
~-2.5820E-02
6+3928E-02

3.4573E+01
-1.0138E-03
0. *

542698E+00
5.0683E-02
e

-1.4472E+D2
1.8455E-03
-5.0000&£+00-

6+1500£-03
1.0850K-ul
1.3226E+01
AetaZ2H 3=
JetA63E~)L

=Pl BFER-UI

|« TTo3dim=~03
e 164FL U]
~Zelobobn=lz
=2« 2163 EFUU

“zeUDh4aE-0l
-8.0743E-04
T+37T29E+01
2.5790E-02
24649 4E+00



Table 4-8 (Qont‘d)

POINTING SENSITIVITY MATRICES .

T=

D=
1«DUUULTUU
Lo TT0R=UY

-9+.921BE-01

. O
-2.245TE-02
4.0514E=02
O;

-9.9975E£-01
1.7754E-03

51=

~7.0653E-01
2.8643E-02
7.+.086386E-01

50=

=1+3017E+00
5.4520E-02
62129E-01

SLEBS=
1.3273E-02
9.9975E-01

~2.247 1E-02

A0 e Dul

[N}
ks
-4.0514E-02

1 .0000E+00
-1 .00D0E+00
-9.9916E-01

D«
DI
B+6523E-05

4.0514E-02
2.9913E-01
-8«6523E-05

-4.2649E-02

-2.1022E+00
2+3723E-02

-1.00C0QE+00
O
T

U
1l 15 =03
7.0653E-01

O
830
~R+8648E-02

1.0000E+00
-1.0000E+0D
7-0535E-01

=T .0653E-01

Z2.8648E-02
=7.0535E-01

-6.1806E-01
-1+92083E-02
~1.9012E+00

=1.8150E-02
O
O

=i 'uuuu'f!—“’uu
=1 e LMEMM vy

4:0514E-02 -7.0653E-01
Oe -9.9975E-01
D« ] O o
9.9914E-01 2.86483E-02
0. 2.2471E-08
117TT5E-0%3 -1 .0000E+D0 -
~He6583E=05 T.0536E-01
=7 .086%3E-01 -4.0514E-02
Ded6ABE-02 -9.9318E~01
-7 «0583E-01 B.6523E-05
R
Oy 20U
Pagy
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IMU SENSITIVITY MATRIA

T=
SAl=

9.7437Er0L
-4.7918E-02
2.1181E-02

-4.3359E-02
-T7.59B5%E-04
1.6512E~03

-2.0919E-01
-2.1181E-02
~4+T91BE-02

900 -000

6.8969LE-02
4.7862E-02
-2.1156E-02

9.0769E-01
7.5897E-04
<1.6493E~03

~3¢5165E-02

2.1156E-02
4.7B362E-D2

STA SENSITIVITY MATRIX

T=
SAU=

-2.2069E-01
-9.2382E-01
~1.1559E-01

3.0402E+00
-1.1253E-02
-7.6813E-01

1.98723E-01
1.5317E-01
~2.454TE~01
- 4«Q3080E+01
-2.748%4E-02
-1.9087E+00

~2.1291E-01
~1.6393E-01
-2.4305E-01
-54+5215E+01
-2.8411E-02
~1.9326E+00

300,000

1.92031E~01
1.9031E-01
~6+1666E-02
-2.1616E-02
1.0647E-03

1.7098E-01
1.7098E=-01
-1 .2412E-01
-1+6040E~02

-1.4036E-02

~3.0352E-01
-3.0357E-01
-2.1338E-01
-%.9163E-03
=1.9337E-02

Table 4-9
Sensitivity Matrices, T = 900 sec.

2.0913E-0t =1.36B3E+02
Te3985E-04

-4.7918E-02

2.1181E-02 ~5.0000E+00

4.8B611E-02

-7+5985E-04
1.6512E-03

9.7616E-01
-24.1181E-02
-4.T9IBE-Q2

-2.2382E-01
-1.392533E-01
~1.9040E-Q1

2.15%1E-02
-1.0635E-03

1.5317E-01
-8.5592E-02
-5+ 4645E-02
16021502
i+ 4020E-G2

-1.6393E-01
2.3124E-02
2.2B6BE-02
5.9094E-03
1.9314E-02

~2.169TE+00
-4.7918E-02
O

—6.0431E+01
~1+651PE=-03
Q.

1+3550E-01
-1.2786E-01
~1.2786E-01
-2.1616E-02

1

-12624E-01
~3.1273E-01
~3.1273E-01
-1.+.6040E-02
-1+4036E-02

1.3586E-01
-3.2340E-01
~3.2340E-01
-5+9163E-03
=1.9337TE-02
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2+1697TE+0D
-7.5897TE~-04
0.

-1+3683E+02
4.7862E-02
-5.0000E+0Q0

-4.7151E+00
1.6493E-03
O

1-1051E-01
-1.9G40E-0C1
~6«1T724E+01
-1.1253E-02
=1.8973E+00

=-1.7703E~-01
~Ye4645E-02
-4.5801E+01
-2.7434£-02
-7 +83532E-01

2.3014E-01
2.28685-02

=168 4E+01

=2.8411E-02
3+045a4E~01

6«48 1E+01
745985E~04
B

4+T151E+00
~4.79VBE~D2
Qs

-1+36H83E+02
-1+6512E-03
~-5.000QE+00

2.4162E-01
-2.8566E-02
-3.2134E+01
1.1240E-02
~1+17TEE+00

1.15813E~01
-1.24379KE-02
=7 «44B0E+0]
2.T458E-02
-2.31452+00

-2.4001E-01
3.4308E-03
—E«1126E+01
Z.83TEE-02
~2+B8Y13E+D0



Table 4-9 (Cont'd)

PBINTING SENSITIVITY MATRICES

T= 200.000

5=
1.0000E+00

~1.0304E-0V

~1.0043E+00

0. _
-1+2797£-01
-4.7TAQBE-D2

0.
=9.9712E-01
-1.0377E=01

S51= i
-7«1011E-01

-3.3522E-02

6+3373E~-01

S0=

-1+7455E+00
6+524TE-02
. Be1616E-01

SLES=
Fa1283E-02
PF1TAE-0L

=1.2867TE=-01

O«
DI
4.7T665E~02

1 «Q000E+00
-1+.0000E+00
~9.9888E-01

0.
0.
4.7411E-03

~4«THO65E-02
9.7388E-01
~4.9411E-D3

T0634E-02
~2«3065E+00
15452E~-01

-1.0000E+00
0.
(31

O«
~1+0389E-01

Qs
0
3.3522E-02

1.0000E+0D

=1:0054E+00 -1.0389E-01
‘4-941 lE'OS

7.8049E-01

=7T+1011E-01 =-7-1011E-01
=3+3522E-02
-7 .8049E=-01"

~3.3522E-02
=7 «8047E-01

-1.0090E+00
=B RESHE-Q2
-1 +8354E+00

-7 +55795-02
O
0.
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-1 .0000E+00C
=1.0054E+00
T+1011E-01 -4.7665E-02

PF288E-01

1.3296E-02
0.
-7.1011E-01

~3.917TBE-01
G
-3.3522E-02

1+2867TE-01
~1.0000E+00
6,+3373E-01

4.T665E-02

=9« 988BE-01

7-1011E-01
J.3522E-02

44241 1E-03 -6.3373&~01



4.3 OBSERVABILITY ANALYSIS

An observability analysis is performed as a means to determine if, in fact,
the significant systematic error sources can be observed {for calibration) in the
available measurements. Since the measurements are contaminated by noise and other
uncertainties, one cannot really "compute" the misalignments, but merely obtain a
"hest" estimate. In the task of doing this, the equations can be represented as

8 = Méa +n (4-76)

where 8§y is the variation of the measurements, M is the measurement matrix, da is
the variation of the {misalignment) errors, and n models random uncertainties as
additive observation noise. In general, assume there are p parameters to be esti-
mated, that m measuvements can be obtained at each calibration point, and that
there are n calibration points.

PGY(1)_

sy(2)

§v(3)
sy« -7 @)

{mn x 1}

- (4-78)

WM(n)

= {mn x pl
énd

n = (n(]): n(z); A Y n(ﬂ)) (4-79
One then obtains

§y = Hsa + n (4-80)
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The best estimate (in a least square sense} for éa is given by
sa = (HH)™V HT v (2-81)

The matrix HTH is sometimes called the information matrix and, no matter how many
measurements have been taken, HTH is always p x p. If HTH possesses an inverse,
i.e., it is non-singular, then all parameters in éa are observable and estimates for
them can be obtained. (Note that a similar argument holds for sequential estima-
tion.) It is easy to show that if the number of total measurements obtained is less

I

than the number of parameters to be estimated, then H'H will always be singular.

Thus, one must impose that
mn > p {4-82)

When mn = p (the minimum number of observations), then H is a square matrix and it
follows that in this case 6o = H-T s8y. If H'1 exists, then all parameters are
observable. The use of more observations will, of course, improve the estimate,

but to establish observability it is sufficient to use only the minimum number of
observations., On the other hand, since the measurement matrices M(k) depend on
nominal values and thus vary with time, failure to detect observability when the
minimum number of required measurements are used does not necessarily mean that the
parameter vector is unobservable. A later measurement may yield new, independent
information, 1In certain cases it is immediately obvious that not all parameters are
observable, namely: when the matrix M(k) always contains the same Tinear dependency
among its columns, for all k. This happens, for instance, when two parameters always
appear in pairs and clearly the parameters are not separately observable.  When
inobéervabi]ity of some individual parameters has been established, combining certain
of these parameters to one Tumped parameter can frequently restore joint-observability.

In the paragraphs which follow, observability of key systematic errors is
demonstrated for both attitude determination and experiment pointing, Simulation of
the attitude determination calibration, discussed in Section 6.4, verifies the
results demonstrated here analytically.

4,3.1 Observability of Attitude Determination Errors

It is readily evident that accurate calibration of the alignment uncertainties
of the star trackers and gyros is key to estabiishing attitude determination esti-
mation accuracies in the 1-3 sec region. The primary attitude determination error
sources are:
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Star Tracker Assembly

Gimbal alignment uncertainties {including runout)
Inductosyn readout errors
Detector alignment uncertainties, readout error, and noise

Gyro Reference Assembly

Gyro random drift uncertainty
Gyro input axis alignment uncertainty
Gyro scale factor errors

0f these error sources, anly the gyro drift rates are included as elements of the

- state- vector in the on-board attitude determination Kalman filter, and need not be
considered separately. Of the remaining sources, the detector readout error and
noise, gimbal bearing runout, and Inductosyn readout errors can be regarded as con-
tributions which are secondary in nature, perhaps not requiring calibration beyond
that determined prior to flight. It is anticipated, then, that the rest of the
error sources (i.e., gimbal alignment, detector alignment, gyro alignment, and gyro
scale factor) may necessitate a fairly sophisticated flight calibration procedure
based upon using these parameters as elements of the state vector to be estimated
through use of a ground-based Kailman filter. It is important to establish whether
these primary errors can uniquely be isolated from the spacecraft attitude given
the measured tracker and gyro outputs.

To obtain an early understanding of the problem, a brief observability analysis
was undertaken, assuming a least squares estimate. Considered as elements of the
state vector were the following:

§¢, 8§06, Sy: Attitude variables, 3-vector

ays oy Detector misalignments, Z-vector
a1, Gyl Inner gimbal axis misalignments, 2-vector

azo, a30: Outer gimbal axis misalignments, 2-vector

PI’ PO: Inductosyn misalignments, 2-vector

The appropriate measurement matrix was developed, and it was determined that four
elements are only observable jointly, namely: ag + Prs u]I + Pys and further, that
both outer gimbal misalignments and one of the inner gimbal misalignments could

not be separated from the attitude itself except under certain conditions. These
conditions amounted to assuming that the gyros are "ideal", an assumption which is
not valid in the real world. This leads to consideration of defining a set of
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reference axes to which the errors are, in fact, observable under realistic condi-
tions. As the star tracker is the primary attitude reference sensor, it seems
reasonable to focus upon the attitude motion of a star tracker related reference
as opposed to the motion of some other reference in the spacecraft. No disadvan-
tage results concerning the attitude determination of ahy vehicle payload provided
its orientation is established relative to the star tracker. This is the bore-
sighting problem discussed for payload pointing in Section 4.3.2. .

The axes (x{, xé, xé) are established as follows: The inner and outer gimbals
of the star tracker are assumed rotated until both inductosyn electrical read-outs
are null and, under this condition, x{ is chosen to be colinear with the outer
gimbal axis; xé is taken to 1ie in the plane of the two gimbal axes and normal to
x{; and xé is defined as completing the right-handed, orthogonal, set. If the
tracker thermal deformation and inductosyn read-out instability is insignificant,
as expected, this coordinate set will remain stable relative to a stable reference
at the tracker gimbal base, Onily three tracker misalignments remain under the
coordinate definition, namely:

L. degree to which the inner and outer gimbals are not perpendic-

[a.)
2 ular when the inductosyns are nulled.

a1y Qg - degree to which the dgtector optical boresight is not perpen-
dicular to the x7 ~ x3 plane when the inductosyns are nulled.

Relative to (x{, xé, xé) thefe remains now 15 primary error sources; the three
tracker misalignments defined above, nine gyro misalignment and scale factor errors
defined by AY, and three gyro drift bias errors,Bgo.

4.3.1.1 DObservability of Tracker Misalignments and Gyro Biases

The tracker misalignments and gyro drift bias error is explored initially for
observability. The measurement equation is given as

r " -~ =1 - = o hn
- o
u ¥ u U, u 3 (4-83)

y 3 _ 2 0 1 72 I
where 2
U4 = (] - Ll-l )

_ 2\1/2

ug = {1 - Uy )
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as the other parameters vanish. Noting that the «'s are first order terms, it is
straightforward to demonstrate that for any particular star

u=y+Ya (4-84)
where
Y
= - (4-85)
uy |
. Y1 -
y = (4-86)
C yo
0 -C 0
Y = (4-87)
c V1Yo Y1
where

¢ =‘/1 - ﬁ (4-88)

4-89
b=‘,1—y%-a2y3 ( )

Suppose now that at time zero the estimated STA reference axes are defined
by (v1, Vo> v3). These will differ from the actual axes by three first order rota-
tions, so that at time t.I =0

: 1 i

' ] 1
X = -6 1 5] v

2 3 2

) , ] 1 (4-90)
X3 8, -6y 1 V3
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Now take 8' = (e%, e;, e;) and ﬁ; to be, respectively, the attitude and star
unit vector at time t.. Then

‘ 3 :
-5i _ i i=
o= E uj Xy = E a5 vy (4-91) |

where the a} are known since the setl (v1, Vo v3) has been established. It
follows that

Ui ei = ai - ui (4-92)
“where
) 0 u; ~u2
Ul o= ; ; {4-93)
u2 -u1 1]
Y
4= (4-94)
j
a3

Taking w to be a constant, first order, spacecraft angular rate on

[t;s t; , 4] it follows that
i+ 1 _ i i ~
8 =8 +w(t1.+]-t1.) (4-95)
Recalling, ,
i 41 ¢ Mi 0 Mi 0
- ~ - 4-96
w AY [w bg] w bg { )

since wM1 can be assumed first order because of W . Summarizing these ideas,
it follows that

b
s . g0 .
ol T 121 + g (4-97)
9] |
where -t 0 o 1 0 0
=10 -t o 0 1 0 {4-98)
0 O -t. 0 0 1
| 1 ]
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i
i z : Mj
g = o J (tJ +1° t,]) (4-99)

3=

Combining Equations { 4-84), ( 4-42), and ( 4-97), it can be shown that

Zi + 1 1 . pi + 1 (4-100)

where

a = | ag (4-101)

Arlopi*sr fyi+]y (4-102)

LR S B I ;i Pl 1l (4-103)

P

Take star sensor measurements at t], t2’ TR IN t5, it follows that the 9 para-
meters contained in bg, B], and o can be determined, in general, by

6 ="'y (4-104)

where

z=| ° (4-105

pP=l - {4-106)




T

These parameters are observable provided Z' 7 s non-singular,
is 10 by 10, analytic establishment of non-singularity conditions is difficult.
Approaching this problem numerically via a digital computer, sets of five

stars were chosen arbitrarily and (ZT Z)'] shown to exist in each case. Thus,

except for highly improbable star location

that bg and « are observable.

ﬁyI

Syo

Finally, it is developed that

Since 2! Z

arrangements, it can be assumed

0 u3 =, 0
= -u Wl uuau -u
2 172 172 2
3 3
1 - u% Ug Ug 1 -u

GB]

— 692

0 663

uju, sa (4-107)

2
u
5

] 603

I

_6&2_

The ability to separate tracker biases from the attitude variables depends
upen the degree to which the columns of the above coefficient matrix are not

dependent for each star selection made.

Clearly none of these columns can be

expressed as a linear sum of the remaining columns, i.e., o is observable.
However, since the inner gimbal travel is limited to 15 deg in the present
application (which implies [u;] < 0.259), the coefficients of 56, and §a, are

never very different.

a]'

Thus some difficulty can be anticipated in calibrating

4.3.1.2 Observability of the Gyro Scale Factor/Misalignments of Ay

By previous results, it has been shown that it is possible to calibrate
the 3 gyro biases and 3 star tracker misalignments, and to additionally
establish the attitude at the initial time (and thus all succeeding times)

provided the angular rates are small.

It is thus possible to determine the

nine Ay elements, then re-orient the spacecraft through large angles and
determine these nine elements again, linearizing about the expected orienta-

tion.

In fact, only o

1

requires re-evaluation since « and b% will not change.
This can be done repetitively, the attitude after each such reorientation
being evaluated.

Let Ai be the direction cosine matrix after the i-th such maneuver and
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' evaluation. Then

A = Rl A (4-108)
where
) 0 ug -m; )
Pp= | ey 0wl (4-109)
i w; -m% 0 |
and_Ti is the time duration of application by wi.
Recalling the definition of
J - A;] M bg] _ A;1 Wo_omi . Mo (4-110)
where mﬁi is known due to the previous calibration of bg. It follows that
0 75 - M Sy - Hi
Ry = |3 " 0 " g (4-111)
- -Mi - -Mi
_12 w Yy W 0 N

where vi = (yi1» Yips vi3)s1 = 1, 2, 3. Noting Equation (4-108),

-1
;; log (Ai Ai ) ]) (4-112)

Starting with an attitude described bﬁ Ag» three of the Y43 Can be estabiished
by slewing the spacecraft such that W) is finite and “g = ug M 0 up to

first order effects. In this case Equation (4-112) becomes

0 vy vy
M. oM 1 -1
LI ) R PR B (A1Rg™7)  (4-113)
a1 0

which establishes Y110 Y21° and Y37- In a_similar fashion Y12 Yo2r and Y30

are determined by reversing the roles of w? and wg. The same comments apply
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to vy3s Yo3» and Y33 which concludes the determination of the 9 GRA "geometry
errors” and proves their cbservability.

4.3.2 Observability of Experiment Pointing Errors

This section deals with the observability of system errors other than those
of attitude determination, namely: alignment sensing and experiment gimbal pointing.
The primary €rror sources are:

Alignment Sensor Assembly

Misalignments
Readout Uncertainties

Experiment Gimbal Assembly
Alignment Uncertainties

Inductosyn Readout Errors

In order for calibration to be successful, the misalignments must be observ-
able in the experiment gimbal angle measurements. As it is unlikely that all mis-
alignments are separately observable, "Tumped estimates" are obtained for combina-
tions of some of the misalignments. Although the experiment gimbal is a three
degree of freedom gimbal, the calibration targets are assumed to yield a LOS vec-
tor, so that only two gimbal angle observations are obtained from each target pbser-
vation. It is assumed that the third gimbal angle, wg, is commanded to some con-
stant during calibration, although this constant may differ from target to target
as long as it is known. Thus, the measurement equation'at t|< becomes -

8 m(K)
_ gm ) = M(k) 8o + n(k) (4-114)

669m

syI(k)

where one would 1ike the misalignment error vector Sa to contain:

fe; = Inductosyn error (experiment gimbals), 3-vector
Sag = Boresight sensor misalignments, 3-vector

o, = Last gimbal axis misalignments, 2-vector

o, = Middle gimbal axis misalignments, 2-vector

$ap = First gimbal axis misalignments 2-vector

oy = Gimbal base misalignments, 3-vector

Sa, = Alignment sensor misalignments, 3-vector
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The measurement matrix, M, is derived for the yaw gimbal angle, wg, commanded
at an arbitrary (known) angle, wgo. From the detailed system equations for gimbal
commands one has

by T ¢ - o (4-115)

eg = 8-, (4-116)
0D

= 4-117

I ¥g ( )

If the closed-loop gfmbaT serve control was perfect, then these angles would also
be the gimbal angle servo.commands. Since this is not the case (Inductosyn errors,
etc.), corrections accounting for the servo errors are made. The gimbal angle com-
mands are then given by I

bge = gt % (4-118)

egc = eg * g, {4-119)
= 0+

Ygc Yg T %3 (4-120)

The existing serve error in the wg—gimba1 drive, which causes y_ to be slightly off
null, acts 1iké an additional misalignment of the middle gimbal axis and s accounted
for in this manner. The servo errors, agq» are defined by

+ e

%31 11 el
Ggp | T | E12 T Egp (4-121)
%53 fr3 t ez

where the €r; are inductosyn errors and the Eqq are steady-state servo Toop errors.

The interest centers on the measured gimbal angles, ég and 59, at the instant
when a calibration measurement is obtained. It follows that

¢g = ¢g + 1 (4-122)
69 = eyt epy (4-123)
ig byt erg (4-124)
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and, therefore,

ki
]

$ - gy t e (4-125)

8. = 8§ - )5 + €12 {4-126)

One must now relate the variations in the measurements to variations in the pointing
misalignment error vector.

The angles, ¢ and 6, are defined by

sing = -Us (4-127)
uy, - usU
1 374
tand = ———io {4-128) -
u3 + u1u4
where
n
Us Y
. = n
Up Ap¥ge | Y2 (4-129)
n
U3 U3
-0 .U, T o .
U4 = 2372 e? (4_]30)

v1 - u22

The column vector, U, is the normalized target LOS vector in nominal gimbal base
coordinates. It becomes clear now why the generalization was introduced to allow

an arbitrary known value, wgo, for the third gimbal angle command. Without this
freedom, it is evident that the misalignment, Ef and Em, would not be separately
ocbservabhle, Thquimba] angle, wg, is the response to the command wgc = ¢ O The
measured value, wg, differs from wg by the inductosyn error, €pgs SO that in expanded
form
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U3 1 (am3 - 513) 0 coswgm s1nwgm 0

Uyl = -(um3 - €13) 1 % -sinwgm coswgm 0
us 0 g 1 ] 0 1
1 0 -0go
0 .I 0‘.1_-]
Ay “opp |

At this point it is noted that the static servo equilibrium error, €a> will
not enter the calibration procedure at all since the measured gimbal angles are
used as the observables., It is also evident that none of the three inductosyn errors
is separately observable, but that they all merge with other misalignments, For
simplicity then, just one of the errors is carried and, by convention, let the

inductosyn errors be included with the misalignments, i.e.,

a1 T E11 T %a) (4-132)
A = E[p T gy (4-133)
{4-134)

*m3 ~ %137 %m3

Taking the variations and applying the above convention, it follows that

[
s
]

8¢ - da (4-135)
el

(=)
@
n

8o - Gazz (4-136)

Next, the varjations 64 and 6¢ are evaluated. After partial differentiation of
Equation (4-127) and (4-128) and some algebraic manipulations, one obtains that

sy
S¢ | 0000 |mm=——-
= 6| 6a _
&6 ___59— (4 ]37)
6ae2
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where G is a 2 x 5 matrix whose entries are given by -

97 = 0 (4-138)
.-
912 ~ Tose (4-139)
993 = 94 = 915 = O (4-140)
2 us(1+ u)
97 = ©0s B 3 (4-141)
(u3 + u1u4)
o -(us® + ui®) (agouy - o)
gop, = COSO 5 5372 (4-142)
(u3 + u]uq) (1 - U, )
p -up{1+ %)
9p3 = 05O 4-143
2 (“32 * “12) Up
9pq = COSTP > ; (4-144)
(u3 + u]uq) 1 - Us
2 -(uy? + uy?)
9oy = €OS76 (4-145)
{u3 + u1u4) ¥ - u,
Substituting into the previous equations yields
Gu] .f 1 1
8¢ -1t 8a 0! So
ml _ el | 5.2
S = 6y [suyl + | G o (4-146)
L 0 8 =11 Sa
gm su ' “a2 i 23
3
where
Gu = {first 3 cp]umns of G}
G£3 = {dth co]umn'of G}
Ge2 = {Sth column of G }
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The next task is to determine §u. Using Equation {4-131) one obtains, after

some algebraic manipulations,

— -
Gam1
8o,
su = TosMeyt | ™ (4-147)
gm 8o
1
)
where
_ n n | n n
0 =S4y ¥ Calsy SqUy ~Cqliy
n o _ n n n n n
s U3 “CaUp T Sg¥p | C3¥3 [ Sguy | (4-148)
n n n
SqU; - Caly 0 Uy Uy
and where
s, & sinwgm and ¢, 4 COSb oy (4-149)
From the system equations, one obtains that
W= AL S AL G AL A xP (4-150)
gt "t tr r rx "xz 73
where x3p is the normalized target LOS vector in ECI coordinates. Let
- p - p
Zg szx3 525 GAXZx3
23 = AxZg Sz = Az
Zy = 0.2, §z3 = 84z, + T 67, (4-151)
z, = Atr23 622 = AtrGZB
_.f'\T = /‘\T AT
Z; = dy 22 621 5ut 22 + oy 622
no_ n .
u = Agtz1 su = Agt521

Making use of previously obtained result ({Appendix D) for the expansion of GAXZ .
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one obtains that

t
s = AL |z, Az, tea A x| [TEa” (4-152)
gt 2 1Ttr T4 1TEr X 3 _r_ -
[} 1 5 o "
p
where
0 73 -Zp
22 = “Zy3 0 8 (4-153)
e
and
0 243 2y
L Y (4-154)
“2gy  Zgy O
Substituting for Su and 6un, one finally obtains
o]
dat
3
) -1 S 0 1 Sa m
gm| _ ell . H 22 n
56 o 1oz s 7| Ak P R
gm ' e2 ' %23 s
tf2
-7 (4-155)
6cx.t
6T ALz, Yaz, tea A 1O xPc| [
uWar'gt [“2 ¢ Tte T4 1 Ttr Tex 3 °%p
5 0
o]
which may be rewritten as o]
60,2
2 2 2 2 3 3 3 |[fo
Sogm| . VR T A I T
s | [Me e m e D b g oo (4-156)
gm Sa
t
aar
50
p_l
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The matrices Mi must now be evaluated at nominal quantities. Since all the

misalignments are

very small guantities, their nominal values are without loss of

generality taken as zero. The nominal measured autocollimator angles are also

assumed zero. Denoting nominal quantities by a carat, one obtains that

where the nominal
tion system,

Using these

« = 0 (all misalignments vector) (4-157)
A, = 1 (4-158)
. = A P -
z, Ark sz X3 (4-159)
,£277=, 247 R - oo .. (4-160) -
o . b
u Agt Arx sz X3 (4-161)
e S { o . . L o
u = wgm u (4-162)
coss = <{1 - u, (4-163)
a 2
2c 3
€0s 8 = m——— (4-164)
p 2
vy +

spacecraft attitude Axi is obtained from the attitude determina-

nominal values, one obtains

Lo -1 0 ¢ 0 0
! M] = . 1 . . (4-165)
ot 0 -(1-uwAVE w0 - ,)2
A ~63(1 622)1/2 61(1 _ a22)1/2
Mo = - — (4-166)
=7 2 P2
Uy + u3 Uy + Ug
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) -c3u3(1 - uzz)]/2 -53u3(1 - 622)]/2
Mf = — —— . {4-167)
CalU SoU U
S3”“g]§.2 '°3+~g]§'2
. u1 +u3 u1 +u3
' - cosy siny 0
. _(-I - u22).[/2 o am am
] = _ed
[Mt : Mtv -ﬁ1 s1n¢gm cos¢gm 0
0 0 0 1
~ 72, "2
upm * Uy

Age EZ: -i; (4-168)

and ﬁo need not be evaluated for the one-shot estimate.

It is evident from this that, for all time, the matrices ﬁt and ﬁr satisfy
(4-169)

and that, therefore, the reflector and autocollimator misalignments will not be
separately observable. The reflector misalignments are lTumped with the autocolli-
mator misalignments to yield '

Gatr A Sat - Sur (4-170)

and
2 M, = -M | {4-171)

2 2 2 2 3
= iMoiM MM (4-172)
M Me :Mz :Mm H Mf 1otr]
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and the parameter vector by — —

Sa = | sa_ (4-173)

From physical considerations it also appears doubtful if the alignment sensor
misalignments, Gppe C2N be separately observed from the gimbal mounting misalign-
ments, G The only large angle orthogonal rotation that separates the misalign-
ments is Agt’ which is fixed; it merely indicates the nominal gimbal base orienta-
tion relative to the reflector. Combining Equations (4-131) - {4-134) with (4-150),
one obtains

- o -~ "T
U= e wgm %g Agt ay A

o~~~

A

: p
tr % Arx xz %3 (4-174)

Because'@‘Tn represents a single rotation about axis 3, it follows that this above

equation may be rewitten as

U= o Yam “fm Agt‘“t Agr %p Aoy Bz %3 (4-175)
where

1 “m3  T%2

Efm - “%m3 1 &£ (4-176)
Sf2  T4A) 1
Consider
o W (4-177)
fm "gt %t ¥

where v and y represent 3-dim vectors. Taking the variation and evaluating at
nominal values yields

sv = aa}m Agty - A aaty (4-178)

gt

~

where we have used G(EtT) = -du Note that, in general, for small angle orthogonal

£
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rotations dne has that

5a;y = (¥)x(8,) (4-179)

where x signifies the vector cross product. Applying this to the above equation,

gy = (Agty) X bog. - Agt Iy x Sat] {4-180)
- T -
sy = 'Agt [y x (Gat - Agt Gafm)] {4-181)
sv = -A, Y (sa, - A, Gug) (4-182)
gt t gt " fm

where analogously to Equation (4-179 and previous notation

_ T
Goafm (Gaﬂ, ﬁocfz, Gam3) (4-183)

and clearly

Y = y3 0 -¥3 (4-184)

Noting that one may write
Gou = Mypdagy + Medag, + Mbay * M,8a,, (4-185)

it is apparent from the previous development that

- Y |
Mfm = 'MtAgt (4-186)
Furthermore, since
M't = _Mf‘ 2 Mtr‘ (4'187)
then
Gou = M qba, - MtrAgtsufm+M g (4-188)

which clearly indicates a constant linear dependency among the columns of M repre-
sented by the matrices Mf and M It also follows that one may merge the
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dependent quantities by the repiacement

da

.
tr © %y 7 gt %m (4-189)

which is,in fact, a redefinition of Say . @S

T

2 Sa, - Gur‘ - Agt ISOL_Fm . (4-190)

ot t

tr

T
Thus the misalignments ays Sap, and Sag, = (Gaf1, PR 6am3) are not separately
observable, as was suspected. The observable and unobservable parameters are sum-

marized as

o Separately Observables:

uezg Q£3, am] L

o Jointly Observables:

el ¥ %1 T N

Otgz + 322 - OtIZ (4-191)

*m3 < “m3 T %13

“£1

A - a, - AT a
Stp 2 %t T % T gt |f2
%£3

e Unohservables
%a3

The parameter vector sa is now constituted as

1
= 1

o 5ae-|, 6aez 15(122, 50&23
1

1
: T
:Sotm] : 6Ytﬂ, Gatrz, (Scxtrﬂ (4-192)

The new 3-vector, B pes is a lumped parameter, consisting of misalignments of the
alignment sensing system, gimbal mounting misalignments, and the misalignment o3 of
the middle gimbal. None of these misalignments is separately observable. The experi-
ment misalignment %35 representing a small rotation of the experiment about the LOS
has disappeared compietely, since it is unobservable. Furthermore, the Inductosyn
errors have disappeared from the parameter vector. They are now Tumped with other
misalignments, since they are not separately observable.
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The measurement matrix is given by

- [ [N [

M(k) = ﬁe(k) | M (K) 1 My (K) thr(ki| (4-193)
1 ] ]
with the submatrices defined as
-1 0
Me(k) = {4-194)
0 0

M (k) = {(4-195)

: O - wA?

2 2
" ~ 2y1/2
—UB(.I - uE)
~2 , "2
I I B
— ~ 20 1/2 ] “" ]
0 -(1 - Uy ) 0 0 2y -2,
Mtr(k) = Us . -u, wgmAgt -z 0 Zq
312 + A32 612 + 33;~ _*22 -4 0“*
where (4-197)
- p

{” } l"gm Agt Arx sz {KB } (4-198)
{z } ) Atrda; Arx Az {XSP} (4-199)

It follows that there are eight parameters which are candidates for estima-
tion and, since two measurements are obtained from each target, at least 4 targets
are required for calibrating the system. More targets should be used, however.
From the analytic representation of the measurement matrix M it appears that no
further time-consistent dependencies exist among the columns of M and, if one would
take eight appropriate gimbal angle measurements {four independent targets), the
resulting 8 x 8 square matrix H should be invertible. This has been checked by a
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digital program and confirmed. Thus, the information matrix HTH is nonsingular in
general and the parameters appearing in 8a are observable and can be estimated and
calibrated.
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4.4 RELIABILITY ANALYSIS

This section presents the final PPCS reliability analysis. System reliability
goals and redundancy concepts were developed early [5], and the present discussion
extends these concepts and updates the reliability analysis using the completed
hardware designs.

PPCS is designed for a 3-5 year operating life. No specific numerical relia-
bility requirement has been specified, which is appropriate for the present develop-
ment status of PPCS where a significant task of the development effort is to identid
appropriafe reliability goals for equipment of this type. PPCS reliability activit-
have, therefore, been directed toward insuring that proven, conservative designs are
used and establishing configuration flexibility so that appropriate redundancy
choices can be made when numerical reliability requirements are specified for a
particular mission. While a tentative system configuration selection is made on
the basis of a numerical reliability prediction for that configuration, caution
should be used in drawing conclusions from that data. Individual mission require-
ments could result in significant]y‘different configuration recommendations and
therefore radically differing reliability. Further, design evolutionary changes,
such as introduction of LSI into the electronics, will substantially affect numeri-
cal reliability and probably configuration selection as well.

4.4.1 PPCS Relijability Policy

Reliability requirements vary not only in system lifetimes, but in the wain-
tenance policy to be employed. Manned missions tend toward high reliability extrem
for relatively short periods between maintenance (the Saturn guidance computer).
Also, there is a man directly involved in system operation and in the maintenance.
Thus, these systems, the space.shuttle is an example, employ standby redundancy
with automatic reconfiguration only during infrequent time-critical periods. The
emphasis is on the availability of spares when failures occur. A very different
situation exists on long 1ifetime interplanetary probes where man is only involved
via command and telemetry. The possibilities of catastrophic failure before recog-
nition or effective action by man can lead to a requirement for complex failure
detection and reconfiguration or massive redundancy in the form of majority logic.

The PPCS system has few, if any, recognizabie modes where redundancy must be
employed within a very short time. Catastrophic system failure is not envisioned
if significant delays exist before detection and correction of fault. A long,
unmaintained 1ifetime (high 3 year survival probability) is desired, however. Alsc
for PPCS, there is a man "in the loop" (and ground data processing), but there can
be long delays between his periods of v1§1b111ty. In addition, these periods may
be short-lived leaving 1ittle time for complex diagnosis.
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Accordingly, employment of redundancy will be performed strictly by the ground
upon recognition of failures. It is desirable to perform "hard" failure detection
on-board, however, to increase the probability of effective action via ground
commands with minimum on-board hardware/software impact. Monitored values which
exceed thresholds, such as voltages or gyro spin motor rates, serve as hard failure
cues. More sophisticated recognition techniques may be required to detect, for
example, a frozen gimbal or "soft" failures, such as a degraded component or an in-
termittent fault. As a result, soft failure detection will be done on the ground.
Overall, no on-board automatic reconfiguration will be employed.

The techniques of protective redundancy may be divided into two major cate-
gories: massive (also called masking) redundancy and selective redundancy.
Through permanently connected, concurrently operating replicas, the effect of a
faulty component is masked in massive redundancy. Examples include "quadded" com-
ponents, majority voting (e.g., TMR) between multiple units, and adaptive logic
elements inciuding threshold Togic. Selective redundancy encompasses those schemes
which first diagnose a failure, then apply corrective action. Diagnosis may be
performed concurrently without interruption of system operation or on a "time-out"
basis where system operation is periodically halted for diagnostic testing.

Figure 4-8 shaws the effects on reliability in employing some typical redun-
dancy techniques. It is clear that Tonger lifetimes are attained for the same weight
(i.e., number of redundant units) with selective redundancy. Power also is much
less since TMR, for example, requires 3 times the power of a simplex system. A
prime with two passive backups requires only slightly more power than the simplex
system. Selective redundancy techniques are therefore favored for PPCS.

The selective redundancy approach is taken one step further, to the level of
functional redundancy within assemblies., The approach and the advantage of the
approach is illustrated by the example of Figure 4-9. Consider an assembly having
a failure rate of 10,000 x 10'9 failures per hour. Reliability for 5 years would
be 0.645, generally unacceptably Tow, Duplicating the assembly doubles the weight
{and cost), and raises the reliability to 0.922, a significant increase, but not
typically high enough for a single assembly. Functional redundancy, assuming in
this case that identical compiexity functions capable of being cross-strapped can
be identified, raises the reliability to 0,980, Note that the weight is the same
(approximately) as the dual redundant case, assuming that functions selected are
simple to cross strap {a necessary criteria for their selection}. A task, then, of
the PPCS reliability considerations has been careful identification of functional
elements to be made redundant with minimum interface problems. This also supports
the design approach to accommodate in-flight maintenance/recovery capability.

4-72



Retiability

1.0

0.9
0.8
..
0.7
Redundancy Approach

0.6 A Triple Modular Redundancy' (TMR)

| B Non-Redundant

i 't Single Standby Redundant

O  Double Standby Redundant

0.5

0 0.2 0.4 0.6 0.8 1.0

Reliability Exponent = ﬁﬁé%%%%_limﬂ = AT

Figure 4-8. Comparison of Redundancy Approaches

4-73



10,000 x 1077 }—o

P
H

R=e? = 645 {Five Years)

a) Non Redundant Assembly

Agp = 10,000
Aoff T 1,000
A
R=roOnt [+ Aon (- e off t)]
off
R = .922 {Five Years)
b} Dual Redundant Assembly
A0n=2000 A°n=2000 A0n=2000 10n=2000 A0n=2000
Agff=200 Xgp=200 _loff=200 Aoff=200 Aoff=200
3 5
R = ( cShont [1+ Aon (1 - e off t)] )
off

R =.980 (Five Years)

¢) Functionally Redundant Assembly

Figure 4-9. Example of Functional Redundancy

A-74



4.4.2 PPCS Reliability Summary

The PPCS reliability block diagram is shown in Figure 4-10. The redundancy
configuration shown achieves a three year probability of success for attitude deter-
mination of 0.94 and for data processing of 0.963 (against a goal of 0.94 for gach).
End-to-end (including antenna) single experiment success probability is 0.751 (against
a goal of 0.72). These predicted reliabiiities are quite promising and indicate
3=5 year performance can be achieved by PPCS class systems. The required redundancy
is moderate, with a single standby functional element often being sufficient. Other
life extending considerations, such as experiment duty-cycting, backup operating
modes and possible design simplifications resulting from introducing large scale
integration of selected electronics are, of course, not reflected in the present
analysis,

Dual star trackers are used, each with internal functional redundancy involving
the motors/motor electronics and the inductosyn/encoding electronics., Note that
the sensor electronics is incorporated within the star tracker reliability block.
The star trackers are normally operated with one unit off, although both can be
operated simultaneousty.

The gyro reference consists of six gyros in a non-orthogonal configuration.
Each gyro has independent electronics and can be operated independently of all
others. Normally four are on, which gives failure detection capability.

Functional elements for data processing include the control processor, the
memory, and the input/output processor, which incorporates a dual-redundant data
bus structure. One element of each type is required for operation. Any combina-
tion of elements is satisfactory with element selection made by power switching.
Four memory units were required to achieve the necessary reliability-functional
subdivision within the memory leads to difficult interfaces and increased elec-
tronic complexity.

The alignment sensor incorporates functional redundancy in the electronics
and the angle encoder function. Three angle encoder channels are required for
operation--the standby unit can replace any of the operating units.

Experiment gimbal control uses functional redundancy in a manner similar to
the star tracker--dual motors/motor electronics and dual inductosyns/encoding elec-
tronics are used on each gimbal axis. Normally, both channels are operated on
to allow thermal equalization on the gimbal. In the event of a failure, the failed
channel would be_turned off, resulting in a slight thermal imbalance and some degree
of potential performance degradation.
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Antenna control uses a similar approach, except that the motor and the resolver
are not duplicated. Configurations having dual motor windings and dual resolvers
exist. However, their use doesn't seem warranted here, since high reliability is
achieved without them.

4.4.3 Detailed Reliability Analysis

The following sections provide the detailed PPCS reliability analysis. Con-
figuration tradeoffs are developed and reliability calculations are made for each
configuration,

4.4.3.1 Gyro Reference Assembly

Reliability of the Gyro Reference is a function of gyro MTBF and the selected
redundancy configuration. For PPCS, it is assumed that the basic building block
consists of a gyro with associated electronics, For tradeoff purposes, the assump-
tion was made that any 3 gyro channels were sufficient for PPCS operation. For
the six-pack configuration uitimately selected {four operating gyros), a separate

Monte Carlo reliability analysis was run.

To study the effect of gyro MIBF, the PPCS gyro electronicé were combined
with several (assumed) gyro MTBF's and the resulting 3-year reliability was com-
puted for several redundancy configurations. Gyro MIBF's ranging from 25,000 hours
to 500,000 hours were used. Redundancy configurations included: A 6-pack, a 5-
pack, and a 4-pack (any three gyros operable assumed acceptable in each case); two
3-packs (dual redundant); and a non-redundant 3-pack. It was assumed spare gyros
were turned off until needed. The results are shown in Figure 4-11. The 6-pack
reliability hits 0.9 at a gyro MIBF of about 65,000 hours and passes 0.99 at about
350,000 hours gyro MTBF. The gyro used in PPCS is the Northrop GI-K7G, an air
bearing unit with an extensive field operating history--about 500 K7G gyros have
been delivered to the C5A program. fFfield operating data, analyzed by a procedure
developed by Duane and Codier, supports a 30,000 hour MTBF for gyros being produced
in early 1970. Early K7G units used ceramic bearings, while current designs are
Ferrotic bearings--eliminating a failure mode caused by spalling of the ceramic
bearings. If these early units are removed from field failure history, early 1970
gyros would have an MTBF of 50,000 hours. Northrop has analyzed the cause-of-fail-
ure data and determined that two-thirds of the failures are associated with system
incompatibilities (i.e., induced failures by an agency outside the gyro). Exclu-
sion of this failure type would raise the predicted MTBF to 150,000 hours. Finally,
the field data is based on aircraft use, with one-g operation, multiple starts, and
non-benign environment. For a space mission, Northrop considers an MIBF of
250,000 hours for the GI-K7G to be conservative. This value has been used in the
present analysis.
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The 5-pack and 4-pack configurations offer interesting possibilities, especially
for shorter missions or where lower cost/weight constraints are premium. The 5-pack
achieves 0.996 one year reliability for a gyro of 250,000 hours MTBF, while the 4-
pack achieves 0.961 one year reliability.

A further evaluation of gyro reference reliability as & function of config-
uration was made, assuming a fixed 250,000 hour gyro MTBF. Reliability as a func-
tion of time out to five years is plotted in Figure 4-12 for several gyro configura-
tions. The PPCS baseline design has assumed six gyro channels would be required--
this choice still appears justified, particularly for longer time periods, since
it is the only configuration remaining above 0.9 for five years. Again, the other
configurations may be of interest for shorter missions or where weight/power con-
straints are severe,

The selected configuratioh is the 6-pack operated with redundant gyros turned
off until needed. This policy was adopted after considering K7G gyro failure mech-
anisms. The prominent failure mode is bearing contamination caused by particies
deposited in the bearing due to gas wigration through the bearings. This gas migra-
tion is minimized by reducing gyro temperature—-which is achieved by turning stand-
by units off. Non-start failures have not been observed by Northrop helow at Tleast
1000 start-stops, a figure which PPCS would not exceed.

A more detailed analysis of the 6-pack configuration was made to account for
the PPCS operating policy. Four gyros are normally operated on to provide a capa-
hility for failure detection, After failures have occurred, this policy can be
modified to allow operation with only three gyros on. However, because of geometric
considerations {discussed in 6.3 ), only 10 of the possible 20 three gyro con-
figurations give performance equal to the four gyro case. A Monte Carlo analysis
technique was used to compute the reliability of the 6-pack under this operating
policy, giving the results below:

Years R(t)
1 0.9973
2 0.9803
3 0.955

4.4.3.2 Star Tracker and Sensor Electronics

The star tracker and sensor electronics are analyzed as a-unit because of
the extensive number of interfaces between them. The star tracker consists of a two
axis gimbal with a star sensor which has integral electronics. The tracker incor-
porates two gimbal drive motors and two inductosyns (resolver-like angle encoders)
per axis to achieve thermal and mechanical stability. They can also be used to
provide redundancy, since each motor is sized to drive the gimbal by itself and
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either inductosyn can provide gimbal angle readout. Each inductosyn has an asso-
ciated pre-amplifier on the gimbal to raise the output level for transmission to
the sensor electronics.

The sensor electronics is separate from the tracker and provides control of
the gimbal motors and provides excitation to the inductosyns and encodes the result-
ing outputs into a gimbal angle readout which is provided to the digital computer.

The possible redundancy configurations for the star tracker/sensor electronics
is limited by the difficulty of the interfaces involved. Cross strapping of the
encoding electronics (the most complex part of the sensor electronics) would require
relays at the input, due to the very sensitive signals from the inductosyn. Relays
at the output would also be required to cross-strap the motor electronics, due to
the high power levels involved. For many reasons, this approach is not attractive.
Other possibilities for redundancy have been identified which avoid these problems--
they make use of the "extra" motors and inductosyns already present for thermal-
mechanical stability reasons. Figure 4-13a and b shows non-redundant and dual-re-
dundant (non-cross strapped) star tracker configurations. Figure 4-13¢ shows the
functionally redundant configuration achieved (without cross strapping) providing
separate electronics for each of the dual motors and inductosyns on each gimbal
axis. Figure 4-13d extends this approach to two star trackers..

The reliability versus time for each configuration is plotted in Figure 4-14..
The two tracker functionally redundant configuration (4-13d) is required for rea-
sonable 3-5 year reliability and is, therefore, the PPCS baseline configuration.
The single-tracker functionally redundant configuration (4-13¢c) is of particular
interest for 1-2 year missions, in that only a single star tracker is required.

4,4.3.3 Alignment Sensor

The alignment sensing function is implemented by stepper motor driven optical
wedges which are used to detect angular deviations of an internally generated Tight
beam. Wedge rotation is detected by a resolver. Electronics are required to gen-
erate the 1ight beam and to control and readout the wedge rotation. The resolver
readout s identical to that used in the antenna electronics.

The mechanical and optical elements are grouped as a functional element--they
are,of course, difficult to make redundant. The electronics can easily be made
redundant, since relatively simple interfaces exist. The electronics are considered
as two functional elements, one associated with the wedge angle encoding and the
other associated with wedge motor drive and control. Figure 4-15a shows a non-
redundant configuration. An extra electronics functional element is added in
Figure 4-15b. Reliability for each configuration is tabulated below:
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R(t) . R(t)
Time {years) {Non-Redundant) (Functionally Redundant)

1 0.853 ' 0.983
2 0.728 0.957
3 0.621 0.924
4 0.529 0.885
5 0.452 0.842

The functionally redundant configuration was selected for the single experiment
spacecraft configuration. Note that for a multiple-experiment spacecraft configuraF
tion, the electronics functions should be grouped in a central assembly with redun-
dancy incorporated only as necessary to achieve the overall desired reliability.
There may be cases where all experiments are not operated simultaneously, which

will allow less electronics channels.

4.4,3.4 Digital Computer and Data Interface

The digital computer organization was strongly influenced by reliability con-
siderations, It was immediately apparent that no existing non-redundant computer
could provide 3-5 year 1ife with acceptable reliability. Two computers in dual
redundancy improves that situation, but is not an efficient redundancy approach.
Accordingly, an early identification of possible functional elements capable of
being cross-strapped was made. It immediately became apparent that the memory was
the major difficulty. For relatively small memories (8K) as reguired for PPCS,
the memory electronics dominate the failure rate. Circuit complexity is not a smooth
function of the number of memory cells., Figure 4-16a and 4-16b show typical plots
of circuit complexity versus memory size for a 3-D core memory. Word drivers can
handle a certain load, if designed reliably, s0 that no additional electronic com-
plexity is incurred until an entire new set is required, whereupon, a jump in com-
plexity occurs. This maximum is set by parameters such as array delay or waveform
distortion, Similarly for the bit-sense circuits, complexity is constant up to
some maximum number of cells, and then the bit and sense 1ines are segmented and
additional hardware is required. Hence, for small memary arrays, the circuit com-
plexity dominates and varies with the number of circuits, while for very large
memory arrays, the tircuit complexity is very nearly propertional to the number
of memory cells. These curves are for core memories, but the same general trend
exists for other technologies with different break points. Plated wire generally
requires more complex circuitry than core memories.

Based on the above arguments, a minimum size memory functional element of 8K

9 failures

words was selected, for which a projected failure rate of 17,200 x 10°
per hour is typical using 1975 technology plated wire. Compared to other functional
elements such as the CPU, 1/0, etc., the memory has inherently a much larger failure
rate which leads to greater replication of the memory in the computer redundancy
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The other functional elements defined are the Central Pracessing Unit (CPU},
Interface Control Unit (ICU), and the Memory Bus. The CPU and ICU functions can
be combined into one element or separated. Four computer configurations were eval-
uated, each having four memory modules. Two configurations combine the CPU and ICU,
while two separate these functions. Dual and triple redundancy of the CPU/ICU were
studied. Figure 4-17a and b show the four configurations.

The three year reliability is tabulated below:

Memory Bus CPU CPU-ICU Icy
Configuration  (4) (2) (2or3) (2or3 (2or3 Total
1 0.9973 0.9986 0.9840 - 0.9826 0.9629
Il 0.9973 0.9986 0.9990 0.9985 0.9935
111 0.9973  0.9986 , 0.9604 0.9565
IV 0.9973 0.9986 © 0.9960 0.9919

Configuration I was selected, since it achieves reliability comparable to other
PPCS critical functions and requires less hardware than other configurations.

4.4.3.5 Experiment Gimbal and E]ectfonics

The experiment control function is jmplemented with a three (or two) axis
gimbal and associated electronics. This analysis assumes a three-axis gimbal.
Configuration flexibility exists in the electronics but not the gimbal for readily
apparent reasons. The g%mbal does include two motors and inductosyns per axis, and
is therefore, partially redundant. A non-redundant block diagram is shown in Fig-
ure 4-18a. Note that the electronics are similar to the star tracker sensor elec-
tronics, except that three encoders and motor electronics channels must be function-
ing at once. Here, as in the star tracker/sensor electronics, possible redundancy
configurations are limited by the difficulty of the interfaces included. Further,
duplication of the gimbal (as done with the star tracker) is not reasonablie, since
it implies dual gimbal payloads. The redundancy approach selected is similar to
that selected for an individual star tracker, where use is made of the dual moters
and inductosyns available on each gimbal axis. Figure 4-18b shows the resulting
redundancy configuration.

Reliability for each configuration is tabulated below:

R(t) R(t)
Time {years) {Non-Redundant) {Functionally Redundant)
1 0.812 ' ¢.993
2 0.660 0.973
3 0.536 0.943
4 0.436 0.905
5 0.354 0.861

4-87



Memory I

i

| CPy £ L 1/0 1
o , . J
temory
: h Bus 1 i
I

1

i
| vemry 111 b i M oIt = woun |
t b Hemgry : & i {
! i Bus I1 i ! E i ]
o o o
1 i 1 ! t '
| Memory I - L-J—'CPU 111 o o B
e: |
a} Modular Approach
’_i Momory I —
[ i | i [
D Memory 1 Memory i t
Lj ey i — i_’ Bus 1 ;‘" Pyl L_i . 101
! I - = i ' — __......_—l L ——I
! P I
| — H E (I | ! 1 .
. b
—! Hemory 111 {— L-i Eﬁ’;‘”?{ —~ 1 cePu il : /o1
| : | ! (R |
[ |
t !
v ]
| i L } J
—= ltorory IV = CPY III E— I/0 111 o
l j
LY Integrated 1/0 Approach
Figure 4-17. Computer-1/0 Configuration Trades
Oﬁepﬁo
2y Ty
G 0,
& 5o O

4-88



68-t

b} EXPERIMENT CONTROL CONFIGURATION {FUNCTIONALLY REDUNDANT!

Figure 4-18,

IAI\;I\{ESR MIDDLE QUTER
AXIS AXIS
T0S
cooen [
& MOTOR & MOTOR & MOTOR
ELECTRONICS ELECTRONICS ELECTRONICS
a) EXPERIMENT CONTROL CONFIGURATION (NON-REDUNDANT}
MOTOR MOTOR INDUCTOSYN ] EXCITATION PREAMPS ENCODER
‘ ELECTRONICS
B EARINGS | L
MOTOR MOTOR INDUCTOSYN EXCITATION PREAMPS ENCODER
ELECTRONICS
-ﬂ e b" e e = e e
INNER AXIS MIDDLE AXTS OUTER AXTS

Experiment Gimbal/Electronics Redundancy Configurations



4.4.3.6 Antenna Control

The antenna control function is impiemented by a two-axis gimbal and associated
control electronics. Figure 4-19a shows a non-redundant configuration. Redundancy
is relatively easy to implement in the antenna electronics, since the angle encoding
Function has much less stringent performance requirements compared to the star
tracker. Further, the antenna gimbal motor is a stepper motor which is driven by
a logic-type driver which can more easily be cross-strapped than, say, an analog
power amplifier. Figure 4-19b shows a redundant configuration where an additional
functional element of each type has been added to the electronics (except for the
reso?ver drive amp, which 1s hard to cross-strap}.

The reliability for each configuration is tabulated be]ow

R(t) R(t)
Time (years)  (Non-Redundant) __(Functionally Redundant) -
1 0.923 0.989
2 0.852 0.975
3 0.787 0,958
4 0.727 0.940
5 0.671 0.920

The functionally redundant configuration was selected as a baseline since it pro-
vides adequate reliability for this function. Additional redundancy could easily
be added if this function is particularly critical for a given mission.

4.4.4 Design Life/Wearout

Some aspects of equipment reliability do not readjly Tend themselves to a
"random failure rate" reliability analysis. Bearings and gears exhibit a definite
wearout failure mechanism; electronics must be designed to account for component
drifts with time, temperature, and natural environments; and mechanical assemblies,
where high precision is required, must be designed to conservative stress limits to
preserve required performance capability. This section treats these aspects of
PPCS design,

4.4.4.1 Star Tracker Assembly

Design 1ife/wearout considerations for the star tracker include the gimbal
bearing, the data Tink (a wire wrap-up using rolamite principles), the ITT F4004
detector tube, and precision mechanical assemblies {from a stress relaxation and
launch survivability viewpoint). The gimbal suspension bearing is a unique design,
using two balls per axis held in conical retainers. Rotary movement of the gimbal
is achieved by sliding contact between the ball and cne of the retainers. No
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existing rationale for computing wear for this configuration is known, A life test
which simulated five (5) years of PPCS operation was conducted on the star tracker
gimbal bearing and data link. No discernible wear was discovered, nor were there
any lubrication problems [20].

The data 1ink consists of several electrical conductors arranged in a flat
strip and surrounded by a common shield. This strip is placed in a rolamite con-
figuration between the rotating parts of the gimbal. Gimbal rotation causes the
bend in the strip to "rol11", causing a bending force in the conductors. The smallest
bend radius is 0.3 inches. The maximum bending stress is 25,000 psi--this value
assumes only the conductor carries the load, which is conservative. The engineering
model uses copper conductors, for which the allowable bending stress is 36,000 psi.
The flight design will specify 3/4 H beryllium copper which will allow 150,000 psi.
Fither design provides adequate stress margin.

The gimbal and the star sensor must survive laufich Tnduced 10ads without
precision alignment shifts. A11 design has been constrained to stress Tevels below
the precision elastic 1imit for the material used. Further, to avoid stress cycle
hysteresis effects, materials will be stress cycled during assembly. This has been
demonstrated to lower hysteresis effect. Extensive space experience (0AQ, Mariner,
Luner Orbiter) of tubes similar to the star sensor detector (ITT--F4004) has shown
no wearout mechanisms. The only degradation item has been photocathode damage caused
by excess light from sun/moon inadvertently striking the tube while operating.

PPCS avoids this by actuating a shutter and by also turning off the voltage to the
tube when a bright source is in the FOV.

4.4.4,2 Alignment Sensor Assembly

The alignment sensor uses stepper motor and gearhead to drive optical wedges
to achieve error signal nulling. The required rotational 1ife has been estimated
at 160 miilion steps of the stepper motor or 40 million rotations. These values
are considerably less stringent than the Antenna Gimbal, which uses a similar
actuator, so that similar care in design/assembly will assure adequate 1ife. The
wedges are supported by ball bearings--here again the required rotations are low
compared to other PPCS applications and no 1ife problem is anticipated.

4.4.4.3 Experiment Gimbal Assembly

The EGA uses ball bearing gimbal suspensions and has a data 1ink of identical
design to that used in the star tracker. An estimate of the required operating
life for the bearings was made, assuming continuous operation at 0.7 degree per
second for five years. A total of 613,000 rotations result. Using normal bearing
1ife calculations, a life of 1.52 x 109 rotations and a reliability of greater
than 0.9999 for the 613,000 rotations is predicted.
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4,4.4.4 Antenna Gimbal Assembly

The AGA uses a stepper motor drive which acts through a gearhead and a har-
monic drive to effect output motion, Areas of interest from & design 1ife/wearout
viewpoint include the harmonic drive bearing rotational 1ife, gearhead rotational
1ife, gearhead stress, gear surface durability, and motor bearing life. A rough
estimate of AGA duty cycle can be made, assuming that the antenna must slew slightly
more than 360° per orbit, tracking first one data relay satellite, slewing to a
second, tracking for part of an orbit, slewing to another {or the first), etc. For
five years in a 100 minute orbit, one obtains 30,000 equivalent full rotations of
the output shaft. The gear reduction gives 540 million rotations of the input
pinion.

The harmonic drive required rotational life is 30,000 revolutions. The vendor
(USM Corporation) has conducted an extensive three year 1life test program which
showed that the Tife was Timited by the wave generator ball bearing. This bearing
follows the classical ball bearing load-life-speed relationships. Operating at full
rated load and speed, the 1ife is 1.75 million revolutions, which is well in excess
of the requirement.

The gearhead input shaft turns 540 million revolutions. Several gear manu-
facturers rate life of their units at 1000 hours under full Toad and at 5600 to
10,000 rpm. This gives a Tife of from 3.4 x 108 to 6 x 108 revolutiaons, which
again is considerably in excess of the requirement. The operating stress on the
gearhead is complicated by the stepping action of the drive motor. The dynamic
gear tooth Toad capability has been computed at 5.62 pounds. A maximum possible

dynamic load is 3.21 pounds, so the gear is adequately designed for stress.

The gear wear mechanism of interest is surface pitting. To prevent pitting,
the compression endurance limit of the material must not be exceeded. The maximum
dynamic load was used with the wear load 1imit design equations to specify the
required gear hardness to meet the wear requirement. A hardness of 400 Bhn or
Rc43 is required., Typical hardness for BuOrd gearheads is about Rc¢38, so a special
hardness requirement will be specified. The stepper motor bearing also must turn
540 million revolutions. The rated 1ife of the bearing has been computed as
7.75 X 109 revolutions, which provides good assurance of adequate life.

4.4.4.5 Electronics

Reliable long-term operation of electronics is dependent on conservative
design practices. On PPCS, all electronic components are characterized for the
full range of environments to be encountered and for changes with time. Circuit
design assures that operation within specification occurs for the worst case com-
bination of component parameters. Further, manufacturers ratings for components are

derated for all applications at TRW.
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5.0 SYSTEM DESIGN AND PERFORMANCE ANALYSIS

This section discusses analytical and simulation work performed to support
the design and verification of particular key elements of the system and software
functional design. Included are attitude algorithm design analysis, star avail-

ability studies and star catalog definition, star selection approaches, and
attitude determination performance analysis using the detailed PPCS simulations
designed for software design/verification [11].

5.1 ATTITUDE ALGORITHM DESIGN ANALYSIS

There are two basic types of computational effects associated with strap-
down inertial reference systems, namely: errors incurred in the digital
algorithm used for processing-(integration) of the gyro outputs and computer
roundoff. The first error is often broken down further into ortho-normalization,
truncation, and commutation error. The difference in the latter two is often
blurred and the division seems somewhat artificial since both errors are inti-
mately connected with the digita] integration method used. By commutation
error, one generally means the absence of information concerning the sequence
of the spacecraft rotations which commute only for infinitesimaily small angles;
truncation error refers to errors in the digital integration algorithm caused
by the truncation of those higher order terms in a Taylor series expansion
which are independent of the commutation effect. To clarify this point further,
consider the case where the vehicle rate is constant {not necessarily along a
principal axis of the body). In this case, no matter what the gyro sampling
rate, the order of rotations is unambiguously contained in the samples of the
three components of w. Thus no commutation error exists when w = constant.

A clear-cut definition of the two errors is then the following: In a Taylor
series expansion of the integral (which represents the vehicle attitude des-
cribed by some kinematic variables), all those terms neglected in the inte-
.gration algorithm which contain derivatives of w constitute the commutation
error and all the others terms neglected which do not contain derivatives of
% 'constitute the truncation error.

5.1.1 Gyro Processing

In the evaluation of these computational effects, the outputs of the'gyros
are assumed to be. free of drift, scale factor, and alignment errors. These
errors are disjoiht from the computational errors discussed in this section
and their effect on the overall system performance is treated separately. The
system uses rate integrating gyros whose outputs consist of small anguiar
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quantities 48, defined by . t

i k i
A8y = J/_ w (t) dt {5-1)
LR
so that the average rate measured by the ith gyro over the interval [tk, tk + ]]
is given by
i
i_ 2% 4 (5-2)
Y T

where T = LR T is the sampling period for the gyros.

The Euler symmetric parameters used to describe the kinematics of the
spacecraft have the advantage that the direction cosine matrix can be kept
orthonormal by merely enforcing a single equation, Renormalization of the
Euler parameters accordingly after each integration step prevents orthe- -
normalization errors from obéhrrihg, and this type of error can therefore be
dismissed. The kinematic equations of the spacecraft are given by the linear
vector differential equation

f=xap (5-3)

In practice, the vehicle attitude is computed by

1 -
58, T

S 2 k "

' Py (5-4)
where ék denotes evaluation of the matrix @ at the average body rate, @ If
the body rate is constant over a sampling period, then neither a truncation
error nor a comnutation error is incurred since this equation gives the exact
solution to the kinematic equations.

In order to assess the actual computational error incurred, the attitude
vector p(tk + T) is first expanded into a Taylor series about t

plt, +T) = p(t) + (1) T+ ;—;(tk) .. (5-5)

Making repeated use of Equation ( 5-3) and regrouping terms, one obtains

() (e
p(tk +T)= |1+ 7T o+ 5 + + .. p(tk) + (5-6)
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1o R plt) + [z o + o7 9 4 1T olty)
1 .3 (5-6)
- Cont.
c LT h elt) b e - | -

The first square bracketed term on the RHS of equation {5-6 ) consists
of all terms which do not contain derivatives of o,. A closed form expres-
sion of the term is clearly e(]/z)ﬂkT and use of this exponential would,
therefore, eliminate all truncation errors. The remaining terms, if neglected.
would constitute the commutation error with the second and third order terms
in T being predominant and with 4th and higher order terms in T adding only
very insignificantly to the error, provided, of course, that the derivatives
of w are bounded and T is small.

- Consider now a Taylor series expansion of w(t) about t, which yields

BB (t) + a(t) [t - £ 1+ T alt) [t - 122
_ (5-7)

t <1« t

k -1 k + 1

where third and higher order terms have been neglected. The justification
for this is the interval restriction on t and the fact that these terms will
contribute only 4th and higher order terms in T in the evaluation of the
commutation error and these terms may be assumed negligible. Now the average
body rate over [tk, toy ]] js given by

- 1 o+ -
w_ =T f + alt) dt (5-8)
K k

which, when the series expansion is substituted, yields

5. = a(t) + T Talt) + g T (g (5-9)
k
from which it follows that
_ = ,]_7'__1_2" .
Y =8 -zT o -gT 9 (5-10)
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5,1.2

Substitution of Equation (5-10) into Equation (5-6 ) yields after regrouping
terms

(t, +T) = |1+11h +(}T)T2§§+(]E)T3§E+... (t,)
P % - 2 Yk 2 31 1P’ (5-11)

+ﬁ[fz 9 - &1 0(t) + 0(TH
78 Lo o - 9 @ d olty

where 0(T4) denotes all fourth and higher order terms in T and where again all
terms jnvo]ving no derivatives of q, are contained in the first bracketed term
on the RH5, It is important to note here that all second order terms contri-
buting to commutation error have cancelled as well as all those third order
terms which contained ék' Recognizing the exponential in the bracketed term,
this eguation may be rewritten as

1 _
s
plt, +T) = 8(2) ;

k p(tk)
= _ . (512
+ ﬁﬁ'[gk 2 -9 nk} p(tk) + 0{T")

It is now evident that the use of Equation (5-4 } for computing the vehicle
attitude eliminates truncation error and that the third order term in
Equation (5-12) represents the commutation error, assuming fourth and higher
order terms in T as negligible.

Integration Drift Error Due to Commutation Error

We will now relate the integration drift error to the length of the
sampling period T. For any continuous vehicle rate w(t), te sttt L
there exists a state transition matrix o(k + 1, k) which yields the exact
solution to the kinematic equation and therefore

pk + ] = (P(k + ]s k) Qk (5-13)
Defining the error in the computed attitude by

50 8p -0 {5-14)

and making use of (5-4 ) and (5-12) results in

($) T & =N -
Sep 41 7| @ Sei * g5 [ o - o 4l oy (5-15)
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Neglecting again fourth and higher order terms in T one obtains that after N
attitude computation steps

N-1 (

H‘Spk.'.NHf We

1 -

= T .

20 Tk e [+ N T E] (5-16)
j=0
where the double bars denote the Euclidean norm, where the fact that ||£k|l =
has been used, and where

- max 1 . _ :
EN = (e g e - ) g 11 Ay 8 - g 6 1] (5-17)

Let t, and LT correspond to the times where attitude updates are obtained.
Since we are at the moment only interested in the computational errors incurre
in the integration of the gyro rates between the updates, one may assume

apk'= 0. Thus the total integration error (consisting only of commutation
error) accumulated between attitude updates satisfies

] 6o, oy 1 <NT° (1 E (5-18)

Let 8 = (e], 855 33)T be Euler rotation angles which describe the attitude of
the spacecraft relative to the same inertial reference frame as o. Then it

can be shown that .
1o 1] =% [1 60|l - (5-19)

and noting that the time between updates is ATup = NT, one obtains

2
[ sa oy 11 < 20T, T2 TT < [ se iy, (5-20)

where || se || . represents the maximum permissible three-axis (RSS) integra-
tion error between updates. It follows that the sampling period T must

satisfy
: B
T < ZTIETT (5-21)

where 8 denotes the maximum permissible integration drift rate error defined
by

fsoll -

ax

B = ——— (5-22)
ATup

5-5



The Euclidean norm of a square matrix is the positive square root of
the largest eigenvalue of the product of the matrix and its adjoint. Hence

lall = [1al]]  and &1 = J]ul] (5-23)

and

1 - :
TEN < 57 ol lpax 1191 gax (5-24)

so that we impose the stronger requirement on T,

T<2 38

{(units: rad, sec) (5-25)

T

Figure 51shows plaots of g versus T for equality in the above equation for.

various values of [[u[| .. and T|i[|ﬁax' Typical values are assumed as
follows:

a]] < 1.05 « 1073 rad/sec = 0.06 deg/sec

Hull <2+ 1072 rad/sec? = 0.114 deg/sec’

so that for a maximum permissible integration drift error of 8 = 0.1 Sec/minute
one obtains that T < 0.21 sec. The value chosen for the system is 200 ms.

The described gyro processing scheme permits then a rather large sampling
period without producing large integration drift errors. In fact, when o
remains constant over several sampling intervals no errors due to gyro output
processing are incurred whatsoever,

In the derivation of the commutation error it has been assumed that the
derivatives of w are bounded which justified the deletion of fourth and higher
order terms in the Taylor series expansion. Since an infinite number of
higher order terms have been neglected a more precise bound on the derivatives
is in order. It is given by

a1 < e 1)t 0 3 (5-26)

which assures the insignificance of the fourth and higher order terms for
*
sufficiently small T.  For smooth vehicle Timit cycles these conditions are

*A smail number of the &(n) may satisfy the weaker inequality

|,;(n}|| < {n+ 1)1 n>3

Tn -3 °
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5.1.3

almost always satisfied, but for 1imit cycles controlled by torgue impulse
attitude control systems they are violated at singular points, namely at the
turn-on and turn-off times of the reaction jets. This is a familiar problem
in numerical integration. The solution for this is to size the sampling
period T according to the imparted acceleration w, even if the higher order
derivatives do not satisfy the smoothness assumption. The errors will arise
only when integrating across the singular points where the higher order
derivatives of w tend to infinity. The committed error will still be rela-
tively small, and if it occurs only an infrequent number of times between

the usual attitude updates, its effect will remain essentially insignificant.

Computational delay must also be considered since the computed attitude
must be available in real time., Assuming that the computed attitude is avail-
able at times tk’ the gyros are being read at times tk - 6 where 8. 15 the
compu;atjpp delay. Thus a gyro ocutput-at tk-- 6 s Tniow denoted by A8 (t

Using a second order polynomial fit for the integral of gyro rate, it is
easy to show that an estimate for &' (t) .is given by

i i
A (tk $1° sc) - A8 (tk - ac)

A () = > t_qstst (5-27)

s K+ 1

and that therefore the average rate w% of Equation ( 5-2) should now be taken

as . s .
1 1 1
g sty q-80) N (t) 47 -6c) - oo (t -6
e = T 2 s, {5-28)

The error incurred in this linear extrapolation of wi k must ultimately be
charged to the computation delay & .. The effect of §. can be further analyzed
and it can be shown that its contribution is very small for small 6C

It should also be noted at this point that with or without computation
delay the presented gyro output processing method cou1d be further refined
by employing the estimate ;1 to include the terms (T /48) [gk Ko % Qk] p(tk)
of Equation (5-12) in the attitude computations. This would virtually elimin-
ate all errors in the integration of the gyro outputs at the expense of a
few more computations.

Computer Roundoff Error

The computer roundoff error incurred in the digital processing of the
gyro output signals is treated analytically and expressions relating the mean
and variance of the errors to the computer wordlength are presented.

5-8



In general the analytical determination of-computer roundoff error incurred
in a large and complicated computational algorithm is a very tedious task.
Therefore only the approach and the obtained results will be discussed here.

The characteristics of the computer arithmetic are assumed to be as
follows:
o Fixed point

o 2's complement fractional
¢ Single precision
e Double precision accumulation of dot products

The computer word length inclusive of the sign bit is denoted by w, and the
number of significant bits by t{t =w - 1).

In fixed point arithmetic, one usually represents a real number X by a
binary computer word X where -

x = 2% and  |X] <1 (5-29)

The quantity EQ is the scale factor of x where Q may be a positive or negative
integer including zero.

In the present system, rounding does not consist of mere truncation. If
t is the least significant bit available for a binary number X, then rounding
is accomplished by adding (1/2)(2"%) to it (adding a 1 in the t + 1°% signi-
ficant bit in the accumulator) and only thereafter is the word truncated to t
significant bits. The advantage of this rounding method is that the statis-
tical mean of the roundoff error is zero and no biased drift error results.
Note however, that the variance of the error does increase with the number of
computations performed and this point will now be pursued.

The exact product of two real numbers Xq and Xo is given by
y = xpx, = 201 + 02) XX, (5-30)

If X1 and X2 are each represented by t significant bits, then a word permit-
ting 2t significant bits would be required to store ¥ = x]xz. When Y is
rounded to t significant bits, a roundoff error ¢ is incurred so that the
computed value of y is actually given by

Ye = X%t e | - (5-31)
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where in terms of the computer word length, w, the roundoff error satisfies

Q, + Q
el < (21 2y . (2 - )

or equivalently
Q1+Q2'w

le| <2 {5-32)

Proceeding similarly as has been done for multiplication, roundoff errors
incurred in the encoding of system parameters, in a shift-right operation (for
scale factor change to prevent overflow)}, in division, and in double precision
accumulated dot products, are derived. A1l these rounding errors can be
bounded by inequalities. of the type

le| < b (5-33)

where the bound b is a function of the_Q's of the numbers participating in- - -- "~
the particular operation and of the computer word length w.

In statistical terms, the roundoff error € is uniformly distributed on
{-b, b] with mean
E {e) =0, (5-34)

variance

bZ
Var (e} = 3 {5-35)

and successive roundoff errors in string computations are assumed to be
uncerrelated.

The roundoff errpr in one iteration of the strapdown attitude algorithm
can now be traced by distinguishing in each arithmetic operation between the
true value and the computed value. Precise estimates for the Q's of the vari-
ables appearing in the computations can be obtained since the orders of
magnitude are well known. In evaluation of the roundoff error, account has
been taken also for the computations that correct the gyro outputs.

Because of a large difference in the Q's appearing in the individual
operations, it turns out that the roundoff error incurred in the computation
. () T A, -

plk +1) =e p(k) (5-36)
absorbs all previously committed errors. This occurs when several shift-right

operations are performed on the entries of p(1/2)T ik in order to obtain a
Q = 0 for the matrix elements. The roundoff error can then be expressed as
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where the Ejp 3T the errors incurred in forming the dot products of the

matrix times vector multiplication indicated in Equation (5-36), and where _
the €55 j # 0, are the roundoff errors in the entries of the matrix e(]/z)T f,
A1l the PP i=1, »«», 4, 3 =0,1, »»», 4, are uncorrelated and uniformly
distributed on ["bij’ bij] and, since Q = 0 for all variables involved,

- oW )
It follows that |
E(ej) =0 (5-39)
and
Var (e,.) = 20 & 2 (5-40)
€ij 3 0

From (5-37) one obtains then

£ (e;) = 0 | (5-41)

and
2

1,23, 4 (5-42)

Var‘(ei) = E(eiz) = 2g
Equation (5-42) defines the variance in the roundoff error for one Euler
symmetric parameter for one iteration. For easier interpretation of this
result we convert again to Euler angles. Denoting the roundoff error in an
Euler angle by aei one obtains

2 2 2 2
E(ae1 + 80, + 88, ) = 3200 (5-43)
or equivalently
5 = (0.672).10° - 2% G&c (5-44)
Il
The attitude computation

Tye —

. (T7, .

p(k+'|)=eé- k

p(k) (5-45)



is performed many times before an attitude update is obtained. Each time a
new ; is computed a new roundoff error vector, e, with the above derived
statistics, is incurred. However, the previous 3 was already in error. Thus
one has for the computed value of ;(k + 1) that

. 2D T8 o -
pelk + 1) = [e t el [elk) + e(k)] + ¢ (5-46)

0
where ¢(k) is the error in the previously computed ;C(k), and the matrix e

and the vector €q identify directly with the corresponding quantities in
Equation (5-37). Recalling that the entries of (1/2)T ﬁk are small and retain-
ing only the first order terms, the above reduces to

) N T

ok 1) =le® K+ T1o(k) + e+ elk) R
and by Equation (5-37)

;C(k +1) =k + 1) + e(k + 1) + elk) (5-48)

and consequently,

ok + N) + elk + N} + e(k + N = 1) + ooo + elk + 1) + (k)
(5-49)

If an attitude update has been obtained at t = t_, then E(k) may be
considered free of roundoff errors associated with the repetitive computations
and e(k) = 0. Furthermore, since the e(k + j), 3 = 1, N, are independently
and identically distributed, the total roundoff error, for N iterations, denoted
by the vector

otk + M)

N
e = elk + 3), {5-50)
i=1
satisfies
E(ei) =0
and
E(e;”) = N E(e;®) = Mo %, i =1, 2, 3, 4 (5-51)

Converting to Euler angles, as hefore, one has

o ([le]], N) = (0.672) - 10® . 2V VT @&  (5-52)



which represents the one sigma, three-axis (RSS) roundoff error after N
attitude computations. Because of the special rounding procedure used, the
mean of the error is zero, eliminating a biased drift error. The one-sigma
error represents the uncertainty in the roundoff error which grows as the
square root of the number of attitude computations. Fiqure 5-2 shows a plot of
a(||el|, N}/ VN obtained from Equation {5-52).

The present design will use a gyro sampling period of 200 msec (as
determined in the previous discussion) and the nominal period between attitude
updates from star sightings s 5 minutes. Thus N = 1500 and V' N~ 39, If
the criteria is imposed that the three-axis one-sigma uncertainty in the
roundoff error should be less than 1.5 sec (<0.9 sec/axis) after 5 minutes, the
computer word length must satisfy

W > 24 bits

Because of the Central Limit Theorem, the probability of the occurrence of
errors may be interpreted in the Gaussian sense after a number of iterations,

5.2 STAR AVATLABILITY/CATALOG DEFINITION

A star availability study was conducted for the purpose of assuring suf-
ficient stars within the tracker field-of-view to maintain desired performance,
Two basic orbits were considered for varying:times of the year -- a 500 n.m.,
noon, sun-synchronous circular orbit; and a 24 hr circular, eguatorial orbit.
The number of stars visible to the star tracker at any given point in orbit is
clearly dependent upon the nominal mounting of the star tracker, the inner
and outer gimbal angle limits, the sensitivity of the detector, and region
over which the tracker motion is precluded in order to aveid damage by the
incident radiance of bright objects, i.e., sun, earth, moon, etc. A general
digital computer program was developed to determine star availability, i.e.,
which stars are observable within the tracker FOV (Appendix F). The program
input includes specification of the gimbal FOV, star tracker mounting geometry,
sensitivity threshold, orbit, and bright object angular constraints. Stars up
to 4th magnitude of the Yale University Observatory Catalog were used for the
studies. Tracker FOV and mounting geometry are defined in Figure 5-3 .

The general approach was to determine the number of stars available at
discrete orbit angles (e.g., every 15 degrees) for various times of the year.
Typical results are illustrated for one case at Tow altitude in Figure 5-4
Of interest is the observation that star availability is a relatively strong
function of both orbit angle and time of year. Using data generated in this
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fashion, tradeoffs could be conducted with regard to required FOV, sensitivity,
and tracker mounting. Several cases are discussed in the following paragraphs
which illustrate the tradeoffs conducted and present the key results used as

a basis for system design,

The tradeoff of tracker sensitivity is illustrated in Figure 5-5, where
all other parameters have been maintained unchanged. These results are based
upon data taken for 12 times during the year, i.e., monthly intervals. For
the case of sensitivity to stars to 3.5 magnitude, at least one star is avail-
able at all times and there is 95% probability that three or more stars are
available. For the case where sensitivity is reduced to include only stars
to 2.7 magnitude, there results only 95% probability of any stars and probability
for three or more stars has been reduced to 70%. Furthermore, the probability
for five or more stars is less than half for m, = 2.7 than m, = 3.5. Thus,
the impact of sensitivity is fairly severe if one establishes criteria for
100% availability and/or high probability of multiple stars.

The influence of tracker FOV and mounting orientation is illustrated in
Figure 5-6, where the star sensitivity is selected at m, = 3.5, The best
results occur for B = 45°, y = o = 15°, i.e., the long side of the FOV on the
local horizon. In this case, at least 4 stars are available at all times,
and there is 90% probability of there being six stars available. With the
same nominal FOV orientation and the outer gimbal freedom reduced to + 30
degrees, the results remain reasonably good. Two stars are always available
and there is greater than 90% probability of there being 4 stars. The avail-
ability drops off rapidly above seven stars, but that region of the curve is
relatively less significant. The third curve again uses the larger FOV rotated
to have the shorter side along the local horizontal, i.e., vy = o = 45°, g = 15°.
In this case (also shown in the previous figure), only one star is available
at all times, but there is a 95% probabi]itj that three or more stars will be
available. The reduced avajlability here is primarily a result of maintaining
the sensor boresight more than 45° away from the sun. Based on the studies,
as illustrated above, a conservative selection was made to require sensitivity
to + 3.5 (S-20) magnitude, and have outer gimbal freedom of + 45° and inner
gimbal freedom of + 15°.

Star availability was studied in a similar fashion for geosynchronous
orbits. The result for the selected system parameters is illustrated in
Figure 5-7, where the sensor nominal boresight is aligned along the pitch axis
directed North. As a result, the data is limited to the stars in the Northern
Hemisphere. In this case, three stars are always available and there is greater
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5.3

than 80% probability of there being five stars within the FOV. These results
were also used to support the field-of-view and sensitivity requirements on
the tracker.

Based upon the selected tracker requirements, definitive star catalogs
may be developed for both the low altitude sun-synchronous and geosynchronous
orbits. The criteria employed in generating the catalogs included:

¢ Independence from time of year or orbit position, i.e., catalog
adequate for all time

e Maintain approximate 15 degree separation of all stars in catalog
with other stars in catalog

¢ Provide a minimum of 3 stars always in the FOV

® Maintain greater than 5 degree separation of all stars in catalog
with all other known stars with magnitude greater than +4

_ The resultant master catalog for the Tow altitude orbit (i.e., good for
all time) consists of 42 stars, all brighter than m, = 3.3. It is noted that
only B to 12 of the stars would be required to satisfy the criteria during
any single orbit, the number being a function of the time of year. This star
catalog is summarized in Table 5-1.

The catalog for geosynchrongus orbit consists of 24 stars and is summarized
in Table 5-2. With so few stars, this catalog has not been fully optimized.

STAR SELECTION

Whiie the Kalman Filter provides the best linear estimate of attitude, it
does so under the constraint of a given star selection sequence. Thus, it
becomes important to establish an effective selection method. As a result,
several approaches for star selection, each with intuitive appeal, have been
considered.

In order to gain some insight into the significance of star location, it
is instructive to consider the attitude estimation accuracy resulting from
just two star measurements. It is well known that at least two independent
star readings are required to determine spacecraft attitude, even if the star
sensors take ideal uncorrupted measurements. This results, of course, from
no information regarding rotation about the line-of-sight for a single sight-
ing. Consideration will focus upon the attitude estimate of an inertially
oriented vehicle whose star tracker gimbal readings are corrupted by zero mean,

white noise of standard deviation e Suppose that (zl, 25, 23) represents a
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Table 5-1,

Star Catalog for Low Altitude (A11 Times of Year)

Yale Catalog No. Right Ascension Declination Magnitude
2491 100.91355 -16.67130 -1.46
7001 278.94600 38.74930 .04
1713 78.22530 - 8.23967 .0487
1708 78.54330 45,96600 .658
2943 114.38010 5.31833 .688
5056 200.84850 -10.97430 .7019
5340 213.52800 ©19.35900 7217
3982 151.63950 12.13100 1.242
8728 343.94400 -29.79800 1.248
1790 - 80.82720 -~ 6.32167 T1.382
1791 81.033%0 28.57170 1.509
6134 246.83250 -26.35970 1.638
2990 115.80930 28.10170 1.78
6879 275.47800 -34.40030 1.809

15 1.65666 28.89630 1.913
2421 98.93760 16.42830 1.93

936 46.49190 40.81970 2.087
5953 239.58000 -22.52030 2.202
5793 233.31150 26.83000 2.209
6556 263.34000 12.58930 2.225
4534 176.83350 14.75330 2.229
2827 110.68515 -29.23200 2.326
3781 345.76800 15.01870 2.437
4554 178.00800 53,88700 2.44
6378 257.10900 -15.67700 2.49
5685 228.79200 - 9.25867 2.492
2095 89.34975 37.20000 2.545

39 2.87058 14.99630 2.572
6175 248.82000 -10.49870 2.58
4057 154.52700 20.02000 2.635
3748 141.47790 - 8.51933 2.647
617 31.31280 23.29130 2.655
188 10.46942 -18.17030 2.674
4357 168.07350 20.70370 2.677
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Table 5-1. Star Catalog for Low Altitude (A1l Times of Year)(Continued)

Yale Catalog No. Right Ascension Declination Magnitude
7194 285.11250 -29.91770 2.68
2845 111.,32700 8.35133 2.733

603 30.44955 42.16900 2.761
553 28.19220 20.63570 2.777
1910 83.90385 21.12730 2.849
5531 222.25050 -15.90830 2.895
7235 285.96300 13.81570 2.99
8322 326.28900 -16.28630 3.046
4825 189.98550 - 1.26300 3.049
8308 325.62750 9.72467 3.053
7949 311.20950 33.84200 3.087
9 45,12600 3.96400 3.133
5235 208.26600 18.57000 3.153
1702 77.85090 -16.23970 3.162
8775 345.53400 27.89630 3.168
7710 : 302.38650 - .91867 3.177
8634 ' 339.93900 10.65770 3.283
8709 343.21200 -15.99800 3.34
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Table 5-2, Star Catalog for Geosynchronous Orbit

Yale Catalog No. Right Ascension Declination Magnitude
1708 78.54330 45,96600 .658
7924 310.06800 45,.14770 1.349
2088 89.26005 44 .,9443Q 1.931
1017 50.47560 49.73100 2.192
264 13.66217 60.53530 2.404
430 165, 40950 ‘ 61.93130 2.432
424 31.96755 89.08570 2.508
21 1.83834 _ 58.96300 2.561
8162 319.44300 62.44170 2,626
5563 -t 222.79650 - o970 | 2.72
403 20.89740 60.05770 2.807
122 55.12425 47 67570 2.838
7528 295.97700 45.04830 2.849
6705 268.95300 51.48900 2.861
8238 322.05300 - 70.40270 2.897
168 9.64608 56.34630 2.898
6396 257.17500 65.75630 3.052
5735 _ 230.24550 71.95230 3.1
542 27.98805 63.51330 3.216
3569 134,22195 48,16930 3.312
6132 245,88150 61.57930 3.346
153 8.76851 53.71300 3.388
6536 262.41600 52.33930 3.41
915 45.58380 53.36970 3.439
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right-handed, orthogonal coordinate set defined such that the first star
sighted Ties on the z, axis and the second lies in the Z,-24 plane. Suppose
further that the star tracker axes are related by a first order rotation to
these defined axes, i.e.,

—x; ] } 1 03 —92_ [ z, |
xp | = | o 1 By z, (5-53)
_*; | %2 1| L%
and that initially
E(g;) = 0 (5-54)
i,j=1,2,3
E(o; o) = o 8y (5-55)

where Gij is the Kronecker dé1ta. Then the initial error covariance matrix,
PO’ satisfies for & = (31, 62, Ba)T.

Pg=Eloe ) =c" 1 (5-56)

After the i-th star has been considered, the error covariance matrix for this
inertially oriented vehicle, Pi’ is given by the standard equation

I

T
- Py Hy [Hy Py g (5-57)

-1
i=Po +RIH P

-1

. . - . 2 .
where R is the measurement noise covariance matrix (Ur I) and Hi is the measure-
ment matrix associated with the i-th star, i.e.,

? (y} yé)
H. = oo 5 {5-58)
1 0 91, 62, 8,

Noting that the first star lies on the zZ, axis, it follows that after one

measurement e e
2 .
g
r
- 0 0
g Ur,
Py = o 0 1 0 (5-59)
| 2
0 0 Op
7, 7
o O'r
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which illustrates the fact that no improvement of the estimate in 8, results
whereas estimates in 81 and 84 improve considerably if Ur/c is small, Adopt-
ing the trace ratio

trace Pi
" T Trace P, (5-60)
as a measure of the improvement, it follows that
1 2 o
T N R (5-61)
g + O

which illustrates the condition that even under noiseless conditions, one-third
of the initial error remains since only two axis information is provided by
each. star. : - - ST T T

Taking a second star reading and defining a, to be its projection on 22,
it follows after considerable aigebra that

_ g - 1) (382 + 2a§ 8 - a%)

n (5-62)
20 3 (s +ad) (87 - ad)
where
Z 2
g +a
B = ..——7-—[‘- (5"63)
(¢

This result is plotted in Figure 5-8 as a function of the sine of the angle
separating the two stars. This figure is quite revealing. It demonstrates
the desirability of separating the two stars as far as possible, but shows
that this condition has much greater impact when the measurement noise is
small compared to the attitude uncertainty (i.e., y is small). Applying this
consideration to the Kalman Filter with a large initial uncertainty, quick
convergence is anticipated even using stars which are not widely separated.
Once reasonably good accuracy has been achieved, y rises in value and further
improvement becomes more difficult., Figure 5-8 also demonstrates that if the
two stars are colinear {or if one star is measured twice), improvement results
only if the measurements are comparatively noisy compared to the attitude
uncertainty. This again agrees with intuition.

The other side of the spectrum is to consider a means for optimum star
selection. The optimum sequence of star selection is a problem in dynamic
programming. To illustrate, suppose zero mean white noise is the only
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corrupting system influence. The recursive filter equations are then given
by

; 5 T
Pim o P %ty (5-64)

~

-1 _
+RIH P (5-65)

T
i

g
|

S S BT
Py - Ps Hi [Hi P, H
where Q and R represent the state and measurement noise covariance matrices,

respectively; %, is the state transition matrix and

P

{p}k} = € [o(t;) Al (t,)] (5-66)
. Defihing

PR R R ]
Pi = [pyq Py P33 1z Py3 Pp3l (5-67)

Pi propagates according to some function

= 5-68
P'i f(p-i_-ls 0’-) ( )

where o is an index identified in a one-to-one fashion with the visible stars

at time . Note that p contains the six unique elements of the symmetric
matrix P. Regarding P as the error ellipsoid, a somewhat more revealing set

of six states involves the three major axes and three (Euier) rotations describ-
ing the orientation of these axes relative to some pre-defined inertial set.

The optimization problem is now stated as:

Given an initial error covariance matrix, PO, and
given N star readings separated in time from each
other by some fixed amount, determine that star
selection sequence which minimizes the final trace
of P,

Noting that Py implies Pg: define Ji(po) to be the minimum possible final

trace of P permitted i star readings. Applying the Principle of Optimality,
the optimum sequence can, in principle, be determined by imbedding its solution
within a family of such solutions for increasing i. The optimal selection
must satisfy

J;(pg) Mln d: _ g (Flpgs o)) i=1,2, ««s, N (5-69)

Jo(po) = trace of P, (5-70)
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" No atfempt has been made to solve this problem numerically as p is six
dimensional. The purpose here was merely to illustrate the concept involved
in such a selection, and to lend insight and motivation regarding this pro-
blem.

Four approaches (methods) have been considered for on-board star selec-
tion. The methods considered include the following:

Widest Star Separation Method

This method, motivated by the two star results, selects that available
star which is furtherest separated from the previous selection. This method
appears to work well.

Least lUsed Star_Method

- This approach operates by choosing that available star which has been
Teast used for measurement in the past. This method tends to promote stars
just entering the tracker field-of-view.

Minimum Trace Method

- This 'is a local optimization method based upon the optimal selection
approach discussed above for N = 1. Each time a measurement is to be taken,
the visible stars are scanned and the selection based upon that candidate
which best minimizes the trace of Py.

This approach is summarized, such that given

p—— .

% %
PO = aie 592 Ugw (5-71)
Lfgw cei U¢2d
one must determine B = [bij] such that
K
BPy8’ = | 0 4, 0 |d,<dy,dg (5-72)
0 ‘ ] d3 ~
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The trace of ﬂ (tr ﬁ = [c¢2 + 082 + c¢2]) is then minimized by selection of

the star whose coordinates are {b21, b22, b23}.

Selection of the star closest to the optimal selection is the best choice,
as the results degrade symmetrically about the optimum., In actuality, this
approach appeared to show virtually the same results as the widest separation
method.

e Maximum Projection Method

This is a method motivated by questioné of observability (see Section 4.3)
and is particularly applicable to the periods of star ftracker flight calibra-
tion. This method selects that visible star whose absolute value of Uy
{corresponding to the sine of the inner gimbal angle) is maximized, and thus
best tends-to separaterthe biaé,”d1;_fkﬁm the roll attitude. N
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5.4 ATTITUDE DETERMINATION PERFORMANCE ANALYSIS

This section discusses in detail the results of simulation studies of the
inertial attitude determination estimation process. The tasks required in order
to establish the effect of the many interacting influences of the system on overall
performance is one of large proportion. As a result, some selected areas were pur-
sued in greater detail than others, although a relatively comprehensive portrayal
of attitude determination performance was achieved. There resulted two ¢lasses of
runs, namg]y: 1) those runs which simulate the on-board system utilizing a six-
element state vector and 2) those runs which simulated the use of an expanded state
vector to represent, primarily, the ground-based calibration of the on-board system.

The objectives in simulating extensively the on-board system was to evaluate
PPCS performance under a variety of conditions that are considered realistic in
practice, establish the system sensitivity, and establish design criteria as appro-
priate. The purpose of the calibration runs is to support development and evalua-
tion of an inflight calibration approach that will accurately evaluate observable
system parameters and biases which contribute to estimation errors and, therefore,
lead to ultimate system performance. -

5.4.1 Baseline System Performance

Presented initially is the attitude determination convergence and steady-
state performance representing the final system design baseline. The system para-
meters are summarized in Table 5-3. The first two runs shown demonstrate the con-
vergence characteristics of the system. These runs differ only in the period between
updates. In one case (Figure 5-9 ) the period is one minute while in the second
case (Figure 5-]0) it is five minutes. Different update periods were considered to
determine the correlation, if any, between update frequency and convergence period.
1t is noted that in each case, sighting of the first star reduces the estimation
error to the range of 20-30 sec, although the error covariance is not reduced to
this level until the second star sighting. In general, the error will also require
two sightings to be reduced to this error level. With one minute updates, the second
star brings the estimation error below 10 §ec after which the system exhibits a
damped oscillatory behavior in both the estimation error and the error covariance.
Two distinct frequencies appear to exist, one associated with update frequency, the
other a low frequency behavior which appears to be a characteristic of the filter.
This is particularly noted in correlation of the error covariance of the two runs

shown in Figure 5-11.

The run with a five minute update has a performance envelope which exhibits
very similar characteristics to the general behavior of the previous run. In this
case, convergence to the 10 Set region does not gccur until after the third update
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Table 5-3

Star Tracker Parameters

)

Misalignment of Boresight Axes 0.44 sec (vuter),
Inner Axis/Outer Axis Perpendicularity 0.5 $ec
Runout: First power coefficients: 0.35 sec

Second power coefficients: @
Third power coefficients: 0@

Inductosyn Readout: 8 0.5 sec
3608  0.37 Sec
7208 0.58 Set - L

~ Star Sensor Noise: 0.35 Sec (each axis)

Inductosyn Noise: 0.06 Sec {quantization, each axis)

Gyro Parameters

Drift Bias {equivalent 3-axis): 1.8 deg/hr (each axis)

Input Axis Misalignment: typical 3-6 Sec
Scale Factor Uncertainty: typical 25 ppm

Gyro Noise: 0.1 deg/hr (1 second smoothing)

Filter Parameters

Initial Error Covariance P(I, I}, 1=1,2, 3
P{I, 1), I=24,5,6;

State Noise Covariance 1, 1), 1 =1, 2, 3;
{1, 1), 1=4,5, 6;

Measurement Noise Covariance R(1I, I}, I =1, 2
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15 minutes), but the behavior indicates that convergence to steady-state, overall,
is apparently not greatly affected by the update interval. The interesting observed
~orrelation in time of the error covariance suggests that convergence performance

is more strongly tied to basic filter dynamics and orbit geometry than to the actual
period between updates.

The baseline system steady-state run was initiated with an attitude estima-
tion error of approximately 10 sec, resuiting in an initial transient over the
first few updates. The actual error correlates well with the ervor covariance (the
filter estimate of the error), and the performance shown in Figure 5-12 also cor-
relates well with error analysis, reaching a three-axis R3S steady-state value of
5.3 §ec. Although not shown explicitly, the filter estimate of gyro bias was ini-
tiated as 0.05 deg/hr. The filter reduced this error by an order of magnitude with
three filter updates.

5.4.2 Parameter Variation Studies

Parameter variation studies were conducted with the objective of determining
the following performance characteristics:

e Evaluation of performance versus filter update interval
# FEvaluation of star selection procedures/criteria

o Influence of gyro random drift

e Influence of sensor and readout noise

® Performance as influenced by selection of:
- initial error covariance matrix
- state noise covariance matrix
- measurement noise covariance matrix

¢ Influence of sensor (hardware) alignment and bias errors
e Influence of initial conditions

Over 40 runs were taken with parameters varied as summarized in Table 5-4.

5.4,2.1 Benchmark System Performance

In conducting parameter variation studies, a benchmark system was definad
early in the study from which effects of variations in system errors could be eval-
uated. The parameters defined for this benchmark case are summarized in Table 5-5.
{Note that this represents only a benchmark, and not the final désign whose perfor-
mance was presented earlier.)

The performance which results is summarized in the time histories shown in
Figures 5-13 and 5-14. Performance in each axis appears to be similar. Because
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Table 5-4 . Parameters Varied and Range

Initial Error Covariance Matrix

PI.1),1=1,2, 3 4x10°8 (rad)? + 4 x 107'% (rad)?

45,6 4 x 10712 (rad/sec)? > 4 x 107® (rad/sec)?

0
————
—
-
L |
et
-
—
I

Sensor Noise

0.3 sec ~ 1.0 sec

Inductosyn Noise

0.5 sec - 1.5 sec

Gyro Noise
0 + 2 deg/hr

Update Pericd

1 minute + 15 minutes

State Noise Covariance Matrix
QI,1), I =1,2,3 3x107'7 (rad

12 4 1x1073 (rad)®

Q(I,I), I = 4,5,6: 1x10710 (rad/sec)2 + 1x10720 (rad/sec)2
Measurement Noise Covariance Matrix
0.1 §EE2 + 10 éEEZ
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Table 5-5 . Parameter Variation Benchmnark Case

Qrbit:

500 nm, high-noon, sun synchronous, 21 March
Altitude at perigee, 500 nm
Eccentricity, 0.001

. Inclination, 99.5 deg

Longitude of Ascending Mode, 0 deg
Argument of Perigee, 0 deg

Star Tracker Parametérs:

Nominal Base Orientation: Boresight 45 deg above local horizon in pitch/
yaw plane, outer gimbal along roll

Gimbal Limits: +45 deg (outer}, *15 deg {inner)

Misalignment of boresight axes: 0.3 §ec (outer), 0.2 sec {inner)

Misalignment of gimbal base: Roll: 0.707 sec
Pitch: 0.29 sec
Yaw: 0.71 sec

Inner/outer axis perpendicularity, 0.5 Sec
Inductosyn readout bias uncertinaty, 1 Sec (outer), -0.87 sec (inner)
Runout Coefficients: 0.5 Sec (typical)

(typical)
(typical)
¢ (typical)

(o]

Inductosyn Readout: 9, 0.5 $ec
3600, 0.1
7208, 0.2

)

.
17}
(9]

)

[1+]

. L N
Sensor Noise: 0.3 sec (each axis)

Inductosyn readout noise: 0.5 §ec (each axis)
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Table 5-5 . Parameter Variation Benchmark Case (continued)

Gyro Parameters:

Drift bias {equivalent 3-axis), roll, 0.0052 deg/hr
pitch, 0.029 deg/hr
yaw, -0.0196 deg/hr

Input axis misalignments, 0 see
Scale factor uncertainty, 100 ppm (each gyro)

Gyro noise, 0.206 deg/hr

Filter Parameter: Update Period, 5 minutes

—

et (roil), -3.95 Sec (pitch),

—

.6
.5 Sec (yaw)
.0

Initial Gyro Bias Estimation Error: 0.0052 deg/hr (rol1}, 0.029 deg/hr (pitch),
-0.0196 deg/hr {yaw)

Initial Attitude Estimation Error: 7
1

Initial Attitude Evror Covariance: P(I, I}, I =1,2, 3; &« 10'10

Initial Gyro Bias Covariance: P(1, 1), 1=4,5,6; 4x10° "4
State Noise Covariance: Q{I, I, I=1,2,3; 3x 10'12
QI, 1), 1=4,56; 1x10718
Measurement Noise Covariance R(1, 1) = R(2, 2} = 1.0 sec
R{1, 2} =R{2, 1) =0
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the initial attitude uncertainty was small, there is no dramatic covergence behav-
jor exhibited. A three-axis RSS steady-state estimation errof of approximately
6 $at results. The three-axis error covariance measure oscillates some initia]]y,
but the transient damps quickly with a steady-state value on the order of 2-3 Sec.
It is noted, Table 5-6, that this covariance error appears dominated by the term
which corresponds to the pitch axis, i.e., the filter is least certain about the
pitch estimate. This can be seen by observing the error covariance matrix at the
end of the simulated run, PF, and cons1der1ng the relative magnitude of the term
22 which *(for the associated geometry) corresponds closely to the value for pitch.
It is also of interest to note that the other values of the final error covariance
matrix are of the same order as the elements of the Q-matrix, indicating that the
elements of Q are probably contributing significantly to the lower bound of the
values of P,

5.4.2.2 Initial Error Covariance Variation Studies

Sensitivity of performance to selection of initial values of the error covar-
jance matrix was studied through a series of simulation runs where initial attitude
and gyro bias covariance terms were varied without modification of the initial
errors. A summary of the parameter variation matrix is given in Table 5-7. The
results from these runs are summarized in Figure 5-15, normalized to the case where
selection of the initial covariance corresponds to the actual initial and bias un-
certainties,

System performance appears most sensitive to the gyro bias covariance. Since
the gyro bias is important during periods between updates, a good estimate is key.
The covariance matrix converges very rapidly, as can be seen from the time histories,
and the filter solution for the gyro bias proceeds at a somewhat slower rate. Thus
it is helpful to raise the initial bias uncertainty to enhance more accurate solu-
tion. The larger the initial value of the bias covariance terms, the greater oppor-
tunity the filter may have to make meaningful corrections to the gyro bias estimates.
Sensitivity to attitude covariance appears small, although a slight trend is evident
from the results. The trend indicates that a somewhat optimistic estimation of
1n1t1a1 error covariance is warranted where the gyro bias covariance is also opti-
mistic. However, a conservative selection of attitude error covariance seems to
desensitize the system somewhat to the gyro bias covariance selection without much
impact on performance. This latter point, plus the fact that initial attitude un-
certainty was small, leads one to adopt a design practice of conservative selection

“of elements of the initial error covariance matrix.

Selected runs are shown in Figures 5-16 through 5-19, with Tittle observed
difference in performance. The time behavior of the attitude error RSS variance is
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Table 5-6.

Initial Error Covariance Matrix:

4 x 10710

“Steady-State" Error Covariance Matrix:

4x 10712

2 x 10712

4 x 10'13

State Noise Covariance Matrix

3x 107

12

ax 10710
4 x 10710
ax 10714
0
2 x 10712 44 10713
2 x 10711 -3 x 10712
3x 10712 4 410712
2 X 10"17
1018
3x 10_]2
3 x 10'12
1 x 10-]7
0
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Table 5-7 Error Covariance Parameter Variation Summary

P(I,I), I =1,2,3 P(I,I), I =4,5,6
4 x 1078 (1700 sec?) 4 x 10712 =0.17 (%%ﬂoz)
4 x 1078 4 x 1071 (20.0017(5%)%)
4 x 1072 (170 sec?) 1 x 107" 0.017 (E9)?)
4 x 10°° 4 x 10714
4 x 10710 (17 <) 4 x 10712
4 x 10710 4x 107"
4 x 10710 4 x 1071%
4 x 10710 4 x 10°"° (20.00017 (%%9)2)
4 x 10719 4 x 1078 =0.000017 (%%942)
4 x 1071 (1.7 &8 ax 10714
4 x 101 4x 10710
ax 102 (017 &8 | ax 10 1®
4 x 10712 4 x 10716
1

(True) initial attitude uncertainty:
Rol1, 7.63 Sec; Pitch, -3.95 §ac; Yaw, 1.46 sec

{True) initial bias uncertainty:
Rol1, 0.0052 deg/hr; Pitch, 0.029 deg/hr; Yaw, -0.0196 deg/hr
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Normalized Steady-State Error

!

1.3 4
1.2 4
1.1+
« 4x1078

1.0 4

P(1,1) = 4x10"'2(rad)? :

AT =1,2,3) 1 4x10

!

|

0.5 } % } h

10-16 1ot 10714 1013 AP

P{I,I), I = 4,5,6 (rad/sec)2

Figure 5-15. Summary of Error Covariance Variations
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is of interest. Note that after the initial transient (on the order of several
update periods} the error covariance is virtually identical independent of the ini-
tial value. This behavior is keyed strongly to the state noise covariance and
measurement noise covariance, as will be seen in later cases.

5.4.2.3 Measurement Noise/Noise Covariance Variation Studies

Sensitivity to sensor noise, Inductosyn readout noise, and selection of the
measurement noise covariance matrix was determined through a series of runs {sum-
marized in Table 5-8 ) which varied all parameters in combinations. The results
can be summarized by considering the influence of these parameters on estimation
error as shown in Figure 5-20, where the results were normalized to the case where
selection of the initial covariance of unity (i.e., 1.0) most closely corresponds
to the actual noise (the case of 9RSS = 1.12 §ec¢). The results are quite interesting.
1t is reflected that, in general, one may find performance slightly improved by
selection of an optimistic value for the noise covariance matrix and potentially
significant degradation through selection of a conservative value for the measure-
ment noise covariance. Note that the nominal point{i.e., Q=1) for the three curves where
T, 7 1.0 $ec represent quite similar behavior. The fourth curve represents markedly
different behavior because the nominal covariance value is considerably changed from
the other cases, j.e., 0=0.3

The measurement noise covariance matrix, somewhat independent of actual sensor
measurement noise, appears to play a key role in establishing the performance char-
acteristics. This can be seen by considering the time histories of the attitude
error covariance depicted in Figure 5-21. As a result of the error covariance being
significantly increased (factor of 3) through a change of two-orders-of magnitude
in the measurement noise covariance, the attitude estimates are assumed by the
filter to have less certainty and are less influenced by additional measurements
that would actually tend to reduce the error. Looking at the actual performance
of several runs summarized in Figures 5-22 through 5-25, the time history among the
various runs does not differ greatly. It is also of interest to notice that the
error covariance does not provide a good observable measure of system performance
for these cases, i.e., the error covariance indicates performance a factor of two
or three better than that achieved. Thus, a certain amount of caution must be
used in applying good judgement to the externally observed performance, i.e., to
the filter derived statistics. | '

'5.4.2.4 Gyro Noise/State Noise Covariance Yariation Studies

This section presents the performance tradebffs associated with effects of
short-term gyro random drift and selection of elements of the state noise covar-
jance matrix. Three areas are considered, namely: characteristics of gyro drift

{noise) model, gyro noise variations, and noise covariance variations.
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Table 5-8. Summary of Runs

Measurement Noise Covariance SSU Noise Inductosyn Noise

W(1,1) = W(2,2) = 0.1

0.3 0.5
0.3 1.5
1.0 0.5
1.0 1.5
W(1,1) = W(2,2) = 1.0
0.3 0.5
0.3 1.5
1.0 0.5
1.0 1.5
W(1,1) = W(2,2) =10.0
1.0 0.5
1.0 1.5
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Gyro Noise Model

The short-term gyro random drift has been modelled by equivalent white noise.
This noise term can be considered in either of two ways, namely: as the equivalent
rate noise that results from deriving rate from a noisy attitude increment, A&,
or as the noise that, when propagated, yields the appropriate attitude variance
just prior to update. One might argue that these should, in fact, be the same.
However, it is observed from data that different phenomena may govern the noise
statistical characteristics as seen over the integration period (200 ms) as opposed
to those observed over the update period (nominally 5 minutes). Thus, a variety
of gyro noise values have been investigated to understand influence of this key
parameter.

It is of interest to consider the results of test data in establishing the
values for gyro noise to be used in the simulation. Test data available from
both the Nortronics GI-K7G and Honeywell GG-333Agas bearing gyros {see also
Section 6.3) presented in Figure 5-26. [t is noted that the integration step
(used in the simulation only) is 1 second. This was done to conserve computation
time/cost. Thus, it is the 1 second smoothing (averaging period) data that is
of interest. The data shows values in the range of 0.04 to 0.1 deg/hr. During
simulation, values primarily used were in the range of 0.02 to 0.2 deg/hr.

Gyro Noise Variation

Sensitivity of the system to gyro short-term random drift (noise] was eval-
uated by another series of simulation runs. The standard deviation in the white
noise model for short term gyro noise was varied over several orders of magnitude.
The effect was very dramatic, accentuated by the fact that the state noise covar-
jance matrix was maintained at a fixed value for all runs. That value was analy-
tically derived based upon six gyros, each with short-term random drift of
0.0033 deg/hr (over a 5 min smoothing time). This corresponds approximately to
0.057 deg/hr over a 1 second smoothing time. The results can be seen in Figure 5-27.
As shown, an increase of an order of magnitude in noise causes the estimation
accuracy to degrade by a factor of 2, an increase of 2 orders of magnitude degrades
accuracy by a factor of more than 16. Again, it is noted that when the proper sta-
tistics are not provided to the filter, the attitude error covariance shows very
poor correlation with the actual performance of the filter. The simulation time
histories are presented in Figures 5-28 through 5-31.

State Noise Covariance Matrix Variations

Sensitivity of the filter to selection of the elements of the state noise
covariance matrix was evaluated by a further series of simulation runs. In this
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case, the standard deviation in the white noise model for short term gyro noise was
fixed, and the elements of the state noise covariance matrix were varied over two
orders of magnitude {summarized in Table 5-9). The interesting trends of behaviar
that result are surmarized in Figures 5-32 and 5-33. As the state noise covariance
given to the filter is increased from the nominal value {that value which corres-
ponds to the computed variance, based upon the known (simulated) one-sigma gyro
noise), the attitude error covariance increases with increasing slope. Comparing
this behavior to that of the actual estimation error, the latter exhibits a tendency
to decrease indicating an observed improvement in actual behavior for optimistic
selection of elements for state noise covariance. However, this behavior trend has
been observed to reverse dramatically as the state noise covariance is further in-.
creased. Thhs, the-error covariance was a reasonable indication of the behavior

to be expected, although apparently more sensitive to the effects of large parameter
variation. A decrease in selected values of the state noise covariance appears to
have little influence. '

The state noise terms corresponding to the bias states were not examined exten-
sively, but the same trend seems to be evidenced. Optimism in selection of the
matrix elements improves the actual estimation performance, but the behavior of the
error covariance 15 degraded. As witnessed from previous results, however, signif- .
jcant deviation from approximately selected values will lead to degraded performance.

The influence of the state noise covariance matrix on the attitude error covar-
jance measure is shown in Figure 5-34, It is interesting to note the influence of
the uncertainty introduced into the filter by means of the state noise elements.

The smallest value shown for Q corresponds to a relative (three-axis) contribution

of 0.38 éec to the error covariance {which has a value in the range of 1.5-2 ed).
The value of Q one order of magnitude larger has the relative (three-axis) contri-
bution of 1.2 §e¢ to the error covariance (which for this case has increased to

the 2-3 sec region). The large value of Q corresponds to 3.8 §ec (three-axis) and
has a significant influence on the error covariance which-raises the range to 4.6 sec,
Selected simulation cases are shown in Figures 5-35 through 5-38.

5.4.2.5 Update Interval Variation Studies

The effect of update interval on system performance was also evaluated through
a series of simulation runs, where update period was varied through the range from
one minute to fifteen minutes. The expected behavior is summarized in Figure 5-39,
based upon the analytical white noise relationship. The observed effect in the
simulation runs was relatively inconclusive, due primarily to the finite time over
which filter operation was simulated. For the cases simulated, the only variable
was the time between filter updates. The overall system behavior, when normalized,
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Table 5-9. State Hoise Sensitivity Runs

Q(I,1}, I =1,2,3 (radz) Q(1,1}, I = 4,5,6 (l_;g%z
3x 0! 1 x 10718
1 x 107! ! x 10-18
3% 10718 1 x 10718
3x 10712 LY
3x 10718 ! x 10718
3 x 1071 1 x 10717
3x 107 1 x 10720
1 x 1071° 1 x 10718
3x 107" R
1 x 107" 1 x 10718
On ° 0.0206 deg/hr (A1l Cases)
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appears only slightly effected by the choice of update period. As expected, if only
behavior between updates is considered, the analytical prediction (on a normalized
basis) well represents the behavior. Several cases are shown in Figures 5-40
through 5-43.

5.4.3 Calibration Performance Evaluation

Simulation runs were conducted to explare the calibration of key sensor par-
ameters. The runs were primarily concerned with verifying the conclusions reached
earlier regarding observability. Two of these runs are presented. The first relates
to flight calibration of three STA misalignments and three gyro biases. The para-
meters utilized for this run are summarized in Table 5-10. Because of anticipated
problems in calibrating 4 and Maximum Projection Method was chosen for star selec-
tion,

The results of this run are summarized in Table 5-11, which lists gyro drift
bias, STA misalignments, and attitude estimation errors beth initially and after
one orbit. Clearly the drift rates and two of the three STA misalignments have been
accurately estimated and with high confidence. As expected, the estimate of o1 is
poorer, with a 2 §ec residual estimation error. Note that the filter uncertainty
of 3.5 §ec is also relatively large. Additional filtering would continue to improve
this result, and it is concluded that the STA misalignments and gyro bias can effec-
tively be calibrated.

The purpose of the second run was to support the analytically demonstrated
ohservability of the nine GRA “"geometry" parameters, Yij, related to scale factor
and IA alignment uncertainty. An idealized star tracker was employed in this case
and, as Table 5-12 shows, each of the nine parameters is accurately estimated with
high confidence.
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Table 5-10 Parameters for STA, Gyro Bias Calibration Run

Gyro Parameters:

Drift Bias - 2.062 deg/hr
Gyro Noise - 0.208 deg/hr (1a) (200 ms int step).

Misé]ignment and Scale Factor Errors - Typically 6 to 25 sec

Star Tracker Parameters:

Misalignments (3) - 5 sec magnitudes

Inductosyn and Bearing Run Out Coefficient - Typically 0.25 to 0.50 sec

Detector Noise (2) - 1.3 sec {1o)

Orbit:

Synchronous equatorial

Filter Conditions:

9 State - 3 attitude variables; 3 gyrodrift rates; 3 STA biases
Drift bias estimate (3) - 2.0 deg/hr
Attitude Estimation Error, 3 axis RSS - 371 sec
STA Bias Estimates (3) - 0 se&c
Initial
Error Covariance Matrix - consistent with actual errors
Measurement Noise Covariance Matrix - 0.5 sec diagonal terms

State Noise - Consistent with gyro noise influence

Star Selection Method - maximum projection method

5-81



Table 5-11. Results of Calibration Simulation Run
Actual Estimate Actual Estimate | Std. Dev.
at t=0 t=0 alte) | t=24 hr | t=24 hr t=24 hr
Attitude Determination
Error RSS (§EE) 371.1 0. 320.0 3.976 5.169
GRA Drift Rates
{deg/hr)
| b 401 2.063 2.0 0.06 | 2.0626 | 2.060 0.0043
b902 2.063 2.0 0.06 2.0626 2.0635 0.0055
bgo3 Z2.063 2.0 0.06 2.0626 | Z2.0574 0.0038
STA Biases (Sec)
o 5. 0. 5.1 5. 2.9 3.50
Gy -5, 0. 5.1 -5, -5.05 0.37
aq 5. Q. 5.1 5. 4,77 0.28
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Table 5-12

calibration of Gyro Misalignments

Actual

Yalue Estimate Ugto) Estimate a{t)
(Constant) t=0 t=0 t=2400 t=2400
vy (Sec) 4.0 0. 10.3 3.94 | 0.32
Y12 11.0 0. 10.3 10.91 0.31
Y13 3.0 0. 10.3 2.87 0.39
Yo - 7.0 0. 10.3 - 7.12 0.85
Yzz - 6-0 0- 10-3 - 6‘69 0-68
Yo3 3.0 0. 10.3 7.65 1.05
Y3 - 5.0 0. 10.3 - 4,69 0.56
Y30 - 3.0 0. 10.3 - 3.28 0.36
Y33 12.0 0. 10.3 11.91 0.70
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6.0 HARDWARE DESIGN

This section presents the functional design and analysis of each of the PPCS
hardware assemblies. The presentation for each assembly generally includes a func-
tional design description, detailed design tradeoffs, design analysis, and error
analysis. Detailed design (inciuding layouts, schematics, and detailed hardware
performance/design characteristics) is presented separately [12]. The hardware
development status is summarized below. Except for the gyro reference, computer,
and data nterface, the design has been detailed to a level consistent with engineer-
ing model development/fabrication.

Star Tracker - engineering model developed and tested on company sponsored
program. Detailed design documentation available in internal TRW
documents and PPCS Star Tracker Data Book.

Sensor Electronics - detailed design completed with development of detailed
preliminary schematics. Detailed design documentation available in
TRW documents and PPCS Data Book,

Gyro Reference - functional design completed including selection of instru-
ment, packaging concept, circuit functional design, and assembly level
specification (Part 1?

Alignment Sensor - detailed design completed and documented with development
of detailed preliminary drawings/schematics [16].

Reference Block - a representative detailed design for a fully confighred
PPCS was developed. '

Digital Computer - detailed functional design [17 ] and development of
laboratory computer specification (Part 1).

Data Interface - detailed functional design of I/0 [ 17 ] with use of TRW
developed data bus design to level of detailed schematics.

Experiment Gimbal and Electronics - design complete to level of detailed
mechanical layouts and supporting analysis. Electronics design same
as Sensor Electronics.

Antenna Gimbal and Electronics - detailed design completed with development
of detailed drawings and schematics.
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6.1  STAR TRACKER ASSEMBLY

The Star Tracker Assembly (STA) consists of a Star Sensor Unit (SSU) incor-
porating the detector, optics, and electronics mounted within a two degree-of-freedom
Sensor Gimbal Unit (SGU). The design of the sensor is based upon the use of an
image dissector as the basic detector. Advantages of this detector are high resolu-
tion, reliable operation over a long period of time, simple and rugged construction,
lack of a thermionic cathode, and a linear dynamic range of several orders of
magnitude. The image dissector has also been proven in space applications,

The precision gimbal design was based upon the use of a unique single-ball
bearing at each end of the shaft that supports the load. This concept makes use
of a sliding contact between a stationary ball and a rotating assembly. Great care
was taken to achieve thermal and mechanical symmetry to obtain a stable structure.
Nearly identical drive housings at the ends of each axis are cennected by an I-beam
ring, itself mechéhica]]y symmetrical.

6.1.1 Star Sensor Unit Design

The star sensor has two functional modes of operation, search and track. In
the search mode, the total optical FOV is scanned in steps by a much smaller
instantaneous field-of-view (IFOV). Mode control circuits terminate the search scan
on the brightest star present in the search FOV. In the track mode, a small cruci-
form tracking pattern provides spatial modulation of the star signal, and a feedback
tracking loop keeps the star image centered in the detector aperture, regardless of
sensor motion.

The SSU is comprised of the following major elements:

¢ Optical System. The function of the optical system is
to collect and focus the stellar radiant energy on the
detector. A sun shade and sun shutter are provided for
protection.

¢ [Detector. The detector incorporated in the SSU is an
image dissector. The image dissector converts the
stellar optical image into an electron image stream
which is modulated by magnetic deflection to obtain
star position information.

¢ Electronics. The electronics provide the voltages and
waveforms to operate the image dissector and to process
the video signal from the image dissector to develop the
two-axis error signals.
Each of these is discussed in greater detail in the following sections. The SSU

errors are also summarized in a separate section.
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6.1.1.1 Optics Design

The design of the optical system went through seye?a1 jterations before
settling on the final configuration. The final choice was based upon thermal
stability more than optical acuity. Since the detection scheme determines the
centroid of the optical image, no attempt was made to have a diffraction limited
system. The design selected is a folded Gregorian telescope as shown in Figure 6-1.

The synthesis of the basic two-element system is as follows:

let F system effective focal length = 100 inches

-4
n

1 focal length of first element

f2 = fgcal Tength of second element
-1 .
D = F .01
1
d. = =
1 f1
1
d. = =
2 f2
t = effective air space = 13.5 inches
t1k = back focal length {(effective distance from second element
to final focal point) = 8.75 inches
Now D = d] + d2 (1 - td]) -
and EEE- = (1 - td,)
F 1

Solving the second of these equations, one obtains:

4. = 1.0875

1 13.5
and f = 1
1 d1

.0805556

12.413786

Thus, the radius of curvature of the first element is 24.827572. From this,
the equations then yield:

d 1.03492

2

f .966258

1]

2
and the radius of curvature of the second element is 1.932516.

These radii were then used as a starting point in conducting computer ray
traces. Slight changes were made as necessary to reduce the blur circle to within
acceptable limits. In order to make the results more exact, the faceplate of the
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image dissector was included. The index of the faceplate glass was taken as 1.523
and the radius of curvature of the photocathode was taken as 1.23 inches. The
resultant system gave a blur circle of 0.002 inches diameter for on-axis rays; for
the worse case rays (7.07 min), the blur circle is 0.0024 inch.

The ‘Star Sensor optical-mechanical layout s shown in Figure 6-2. The
location of the image dissector coaxial to the optical system provides a very large
central obscuration. This is no constraint on the design optically and, in fact,
provides a sun shade effect which makes a long sun shade unnecessary. This arrange-
ment also provides a location for the bright object sensor, which uses the sensor
sun shade as a field stop. A concern of the mechanical design is potential movement
due to vibration during the launch environment. The structural and dynamic analysis
show that the stress levels in the tube area are small and it is thus anticipated
that any deformation of the Delrin spacer will not be permanent and that the tube
will return to its original position. '

The collecting aperture is obtained by computing the area of collecting optics.
It is given by

where D1 is the usable ocuter diameter of the primary mirror and D2 is the usable
inner diameter of the primary mirror. In this design, D] is 4.5 inches and D2 is
3.1 inches, so that A = 8.35 sq. in. There will be some obscuration from the
supporting web, which will amount to 0.59 sq. in. Thus the collecting aperture is
7.76 sg. in. (50 sq. cm).

The transmission efficiency of the optical system is an important factor in
scaling the optical system. Therefore, a significant amount of effort was expended
in obtaining reasonable data on mirror surface reflectivities. Optical Coating
Labs, Inc., was contacted for information concefning their enhanced silver over-
coated with dielectric. The losses in this mirror surface increase rapidly at
wavelengths less than 43003. This surface was temporarily discarded in favor of
evaporated aluminum. While the spectral curve is not as high as the other in the
visible range, it is flatter across the peak of the 5-20 range. However, since this
surface must be overcoated with a protective finish, the losses introduced by the
coating are taken into consideration. Since there are three reflecting surfaces
in the optical system, the losses occur three times. Figure 6-3 shows the resultant
optical system spectral transmission, T(A), across the spectral band of interest,
where the average transmission is above 60 percent.



o

SUN SHADE -
/ ey ;&‘@

L3 .
T e il L

' 4 M e ey gD ,z_’ A i gl P 3 -
= w4 An ! . - oy
TTyfi¥Iry i )3 ] ] i E‘ . N S T e L e ”/7- 3

! : I s - i il =
1/
|/

9-9

- e b ‘———:h-‘.)
WA . A A i SR S SR S S A A A
Y B W . iy, "y S . PR . N T T Y

R

j \ \
BRIGHT OBJECT SENSOR  \F4004 TUBE SECONDARY MIRROR

]
SHUTTER | ~ TERTIARY MIRROR
| & FOCUS ADJUST
|

Figure 6-2. Star Sensor Uptical/Mechanical Layout
\

b



6-7

Figure 6-3. Transmittance of Total Optical System (3 Mirrors)



6.1.1.2 Detector

The detector used is an image dissector type F-4004. The photocathode of the
image dissector is an 5-20 surface. The normalized spectral response is shown in
Figure 6-4. The peak response, K , is nominally 0.064 amperes/watt. The F4004
has a 15-stage secondary emission multiplier structure, giving it a nominal gain of
106. In most cases, the gain will exceed this by an order of magnitude; as a
margin of safety, the nominal value is used. The anode current of the F4004 image

dissector is given by
.8y

by
]

A AGK]K2 _/- SZO(A)T(x)H(l)dA = 267 nanoamperes

3

where SZO(A) = Normalized spectral response of photocathode

T{») = Spectral transmission of optical system

H(x) = Relative spectral enerqy distribution of star light
(See Figure 6-5 ).

K1 = Peak spectral Eesponse of S5-20 = .064 amperes/watt

I(2 = Peak spe%tra] energy of +2.5M AOV star = 8.1 x 10-]5 .
watts/cm

A = Collecting aperture of optical system = 7.76 sq. in.

6

G = Secondary emission multiplier gain = 10
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6.1.1.3 Electronics

The star sensor electronics is composed of several functional blocks, as

illustrated in Figure 6-6, which are summarized:

Video Processor. The video processor performs the following

functions. During the search mode, automatic gain and threshold
control circuits select only the largest video pulse present

and send it to the mode control logic. When in the track mode
of cperation, the image dissector video is shaped into a digital
pulsewidth-modulated signal and is fed to the demodulator. A
digital star-presence signal and an analog star-magnitude signal
are also developed.

Mode Control Logic. The mode control logic establishes the
mode of operation: search or track. The timing of the search
cycle, the gating of the tracking loop, and search-scan waves
are also controlled by the mode logic.

Demodulator. The demodulator circuits consist of timing gates
to process the pulsewidth-modulated video and precision voltage
switches which develop the tracking logp correction error voltage
at the input to the tracking integrator.

Tracking Integrators. This circuit consists of an integration
stage (op-amp) which provides correcting dc voltages to the
deflection generator to keep the star image centered in the
image-dissector aperture by taking the integral of the error
demodulator output.

Scan Generator., The scan generator provides three separate

circuit functions. A triangular waveform is generated by a
counter-integrator combination and is used as the track mode
scan waveform. Two binary counters and D/A converters are
used to develop the stairstep-type search mode scan waveforms.
The above scan waveforms and the dc-correcting voltage from
the tracking integrator are summed in current dividers to
provide the deflection coil current required.

Error Amplifier. The dc component of the deflection coil
current is determined by a current sampling resistor and the
corresponding voltage is then amplified and filtered to give
the required output pointing error gradient.
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6.1.1.4 Star Sensor Unit Errors

This section summarizes the errors attributable to the SSU. The numbers
given in Table 6-1 are based primarily upon breadboard test data and analytical
error analysis.

Electronic Bias Errors

Three different sources of sensor electronics null shift errors are jdentified
as:

Vd] = equivalent input dc level shifts to the
track integrator.

This term includes:
(a) Error detector summing point variations.
(b) Integrator op-amp input offsets.

{¢) Video waveshape variations.

de = Equivalent input dc level variations to the
deflection coil driver.

This term includes:
(a) Coil driver input op-amp offsets.

(b} Acquisition sweep input dc level variations.

Vd3 = Equivalent input dc offsets of the outbut
error amplifiers.

The sensor output voltage in terms of these three error terms and the input angle ei
has been derived. Using the design parameters, the sensor output variations are
then: '

. _ -6
aAVo = 3.7 aVyp (13 x 1077) Ade + .67 AVd1

The values of Avd], de, and Vd3 have been calculated, and the total RSS overall
output voltage variation is then:

1/2
aVo {[3.7(1.942)] 2 4 [(+120) (13 x 10051 2 4 [(+1.75) (.67)]2}

+ 3.68 mv

With an output error gradient of 20 millivolts/sec, the aVo of +3.68 millivolts

then represents a sensor pointing angle uncertainty of +0.18 sec.
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Table 6-1. Star Sensor Unit Error

Arc_Seconds (1g)

NOISE
¢ Short Term
Shot Noise 0.1
Dark Current ' " NEG
Background Variations NEG
Secondary Emission noise NEG
.. Preamp Noise - . e EG  -

e Long Term

Thermal {Opto-Mechanical) cL2
Power Supply Drifts NEG
Stray Fagnetic Fields 0.15
RSS WOISE 0.27
BIAS
e Hull
Opto-Mechanical Alignment 0.2

Uffsets-Electronics:

7
.002
Track Integrator Input .06

Error Amplifier Input 0
0
0
Star Intensity Bias 0.02
0
0
0

Coil Driver Input

Cross Coupling Effects .05
Thermal (Upto-Hechanical) .13

RSS BIAS .305

RSS TOTAL 0.41
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Therha1 Effects

In particular, three effects are considered. The first is the effect of
Tinear thermal expansion on the blur circle and the focal length. The second is
the effect of a temperature gradient across the telescope tube on the boresight
axis alignment. Third is the effect of a temperature gradient across the
image dissector mounting surface on the location of the boresight axis.

The optical system of the SSU has been designed compietely of aluminum so
that as the temperature changes the radius of curvature of the mirrors change as
well as the separation of the mirrors, :Thus, in theory at least, thé minimum
amount of defocussing occurs. However, another effect which occurs is that the
effective focal length of the system will change which, in turn, will change the
error gradient out of the sensor. Analysis shows that for a 10°C temperature
change, the spot size growth due to this defocussing is 4.004 x IO'Binches. This
represents. less than .01 sec and can easily be tolerated. The increase in focal
Tength will change the error gradient from 20 mv per sec to 20.0045 mv per sec.
It is thus apparent that the thermal sensitivity to defocussing is extremely low
and can be considered negligible.

If we consider the secondary mirror as the fixed plane in the optical system,
then, when the telescope tube is heated on one side, the primary mirror will tilt
with respect to the secondary. In addition, the primary-tertiary system will be
displaced laterally. This is because the telescope tube will curve as it is uneven-
Ty heated. The radius of the center of curvature of the tube can be found one of
two ways; The first is to assume that R will be very much larger than 6.75 inches
and use the relationship for one sec of tilt :

R = —6:75 - 1394628 x 10 %inches

4.84 x 10°°

If the primary-tertiary mirror system is tilted by 1 sec and this ray traced
through the system, there is an error introduced of 1.89 $ec. Thus, one must main-
tain thermal gradients well below the level where the telescope assembly will bend
by 1 sec. Table 6-2 is a summary of the results of a thermal analysis of the Ssu
showing, that for most expected thermal variations, the angular distortion between
the mirrors is less than 1 sec. The conditions of B and E are extreme, since the
total perr dissipation is only 2.7 watts. Therefore, the sun load effects are the
predominant error cause. Representative star/tracker/sun conditions and thermal
conditions were evaluated to establish the error in the Table.
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Table 6-2. Summary of Thermal Analysis Results
Maximum
Average AT Angular Diametrical Gradient
A Across Mirror Distortion Across the Mirrors
Condition Pressure Spacing Tube | Between Mirrors Primary Secondary
(°F) (Arc-Second) {°F) (°F)
A. 10°F Radiant Ambient Variation
Across Electronics Vacuum .057 pEO .0044 .024
B. 1 Watt Power Dissipation
Variation Across Electronics Vacuum -031 11 -0037 011
. Sun Load Along Axis of
Electronics Vacuum 12 .43 .0099 .097
D. 10°F Radiant Ambient Variation
Across Gimbal Axis Vacuum .13 .46 .0097 .050D
E. 1 Watt Power Dissipation
Across Gimbal Axis Yacuum .22 i.77 .014 .080
F. Sun Load Along Axis of Gimbal Yacuum .23 L85 017 .14




The effect of mechanical stability of the detector tube is treated briefly.
The relationship between angular movement and Tinear distance on the photocathode
is given by a simple geometric expression as,

d = fn X tan 8

where fl is the focal length of the optical system. In the case of the SSU

d = 100 x 4.84 x 10°% = .000484 inches/set

Thus, if the image dissector photocathode should move laterally by .001 inches,
error of 2 sec would ensue.

The effect of nonuniform thermal heating of the telescope wiil be considered
by assuming a 1°C per inch gradient across the telescope at the support plane of
the image dissector. Thus, the radial distance on one side of the dissector will
expand more than the other and the center of the dissector will no longer be half-
way between the two sides. Integrating to find the expansion, ' '

2.25 2.25
Ey = 23.8 X 1076 [ ydx=23.8x10° | xdx
0 0
2.25
- -6 2 B -6 ,.
= 23.8x10 X = £0.24375 x 10 ~ inches
7z
0
on one side and
4.50 4,25
E2=23.8x10'6[ ydx=23.8x]0'6[ x d x
2.25 2.25
4.50
-23.8x10°% x* = 180.731 x 107% inches
2
2.25

6 inches, so that the midpoint is

on the other. The total expansion is 240.975 x 10
120.4875 inches from one side. The center of the. dissector is displaced from this
by 60.2435 x 10"% inches. This amounts to 0.125 sec. It should be noted that the

temperature gradient assumed here is very much higher than that calculated in the
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thermal analysis {in fact, almost 7 times larger) so that one would expect more
Tike 0.02 sec displacement.

Electronic Noise

The zero mean, white gaussian noise was predicted to be the same as that
observed in test data. For star irradiance in the +1.0 to +2.0 magnitude region,
the noise is approximately 0.2 sec (1g). For a +3.5 magnitude star (25uA anode
current), the noise has increased to approximately 0.35 sec (1g).

6.1.2 Sensor Gimbal Unit Design

The dominant design criteria for the Sensor Gimbal Unit (SGU) was to achieve
accuracy on the order of one sec in the space environment and be able to substan-
tiate the performance during ground test. Meeting this requirement demands
extreme gimbal rigidity. A compromise between rigidity and weight s to conceive a
gimbaling system in which structural moments are nominally zero and which possesses
thermal symmetry. The first aspect of this concept is achieved by a gimbaling
configuration in which the sensor (SSU) mass is centered between the supporting
bearings of the inner gimbal; the mass of all components associated with the
outer gimbal is centered between the outer gimbal suspension; and the mass of the
entire system is contained in the ground plane. Thermal symmetry is achieved by
developing identical power dissipation on each side of the payload and the outer
gimbal assemblage. This offers elimination of thermal shifts of the initially
established relationships of the gimbal axes. However, achievement of thermal
symmetry requires the use of two motor drives and two encoding systems per gimbal,
hence some unit weight compromise is inherent.

The SGU consists of the inner gimbal drive assemblies, the gimbal ring, and
the outer gimbal drive assemblies. The SSU is directly interfaced (on both sides)
with the inner gimbal drive assembly as shown in Figure 6-7 . A structural I-beam
ring connects the inner gimbal to the outer. The latter,via its gimbal housing
mounting pads, is attached to the reference block. The material choice for the
gimbal structure, except when subsequently noted, was aged 6061 aluminum alloy.
This selection was based to provide dimensional stability, stiffness, and
manufacturing flexibility inasmuch as this gimbal represents an engineering model.
For f1ight models, where weight and larger stiffness are the problems, beryllium
alloys would be used.
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The most significant components of the SGU are contained within the gimbal
drive housings shown schematically in Figure 6-8 and in exploded view in
Figure 6-9 . The housings are essentially identical in performance and general
configuration. Each housing contains the following subassemblies: the gimbal
angle encoder, the gimbal suspension, gimbal caging mechanism, the data 1ink assem-
bly, and the drive motors.

6.1.2.1 Inductosyn Encoder

The selected encoding element for measuring rotaticn are two resolver units
{commercially known as Inductosyns) per axis. One unit is a single speed and the
other has a 360 speed capability. Both resolvers are manufactured on a single set
of plates. To comply with the thermal symmetry criteria, a disc equipped with a
thermal blanket is mounted on the opposite side of the gimbal to achieve similar_
power dissipation on each side of the ﬁayﬁdad. The resolver patterns are printed
on aluminum discs, one being attached to the payload side, and the other to the
housing sleeve within a gap of 5 to 7x10'31nch. To minimize signal noise, the
resolver output is preamplified on the gimbal prior to its introduction to an "off-
gimbal'signal conditioning circuit. For proper mechanical alignment and initial
indexing, the Inductosyn stationary (stator) element is provided with sufficient
mounting freedom to afford minimization of eccentric and nonparallel motions.

6.1.2.2 Gimbal Suspension

The gimbal design features a one-ball bearing configuration. The geometry
of this scheme provides a self-alignment feature and facilitates the fabrication
of the gimbal system by providing inherent reference for the establishment of two
mutually perpendicular planes which contain the rotational axes of the gimbals.

The desired axes are established by a line of contact of the balls with
the cone surfaces of their retaining cups. The accuracy of the retainment of the

established gimbal axes is set by the cups radii of contact and the ball sphericity.

Since the ball sphericity can be obtained to two parts per million and the cups
radius of contact is established by lapping, and since all other critical surfaces
are indexed to the payload balls, the achievement of very accurate alignment is
possible.
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As shown in Figure 6-10 , the suspension consists of two single spherical
balls supporting each axis. Each ball locates itself via two cone type cups. One
cup (rotating retainer) is located on each side of the SSU and the other cup
(stationary retainer) is attached through a flexure to the gimbal frame. The
included cone angles of the stationary and rotating retainers are 20 and 120 degrees
respectively. Furthermore, the rotating retainer is inclined 40 minutes of arc
with respect to the centerline passing through the centers of the spherical balls;
the stationary cup cone is eccentrically offset with respect to the centerline of
the cylindrical shaft containing the cone. The shaft element is housed in the bore
of the bearings preload flexure, which is an intermediate element between the
retainer and the gimbal frame.

The purposeful inclination and offsets of the rotating and the stationary
retainers provides adjustment capabilities to accommodate accumulation of tolerance
and the elimination of runout. Specifically, by rotation of the stationary retain-
ers, perpendicularity of the gimbal axes can be established; also the relative motion
of the rotating cups'with respect the body of the payload can essentially eliminate
undesirable shaft runcut. By virtue of the inclination of the rotating ¢ , Tubri-
cation of all the sliding surfaces is facilitated by a continually changiny
(nutating) circle of contact. The lubricant is provided to the bearing balls and
the rotating retainer contact surfaces by Nylasint reservoirs located inside a
shaft comprising the rotating retainer. A configuration of slots in the rotating
retainer provides Tubricant to the space surrounding the ball below the nominal
line of sliding contact, as well as to the space outside the line of sliding contact.
The excess holes for the lubricant are also filled with Nylasint material. This
affords flow of lubricant directly into the bearing chamber by wicking action, thus
eliminating the molecular flow Tubrication of the bearing vestibular surfaces.

The retainers are made from stellite and the balls from tunasten carbide.
Carbide was chosen for its hardness, known dimensional stability, and relatively
good porocity. Stellite Alloy No. 6B was selected mainly to obtain reasonable
hardness and the non-magnetic properties desired. The combination of these materials
and the particular geometric configuration allows direct application of bearing
loads approaching 200 1bs with no visible Brinelling. Larger loads canh be accommo-
dated by using different material for fabrication of the retainers.

The friction torques are a function of the preload, the ball diameter and the
coefficient of friction. For this design, frictional torques approaching 35 and
60 in-oz for the inner and the outer axes, respectively, were determined.
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The design success of the single ball bearing suspension concept significantly
depends on the performance characteristics of the flexures that support the station-
ary retainers of the spherical halls. Functionally, the flexures provide
clearance support for the stationary retainers, bearing preload characterized by
minimal changes due to temperature variation (and hence minimal qap changes between
the stators and rotors of the inductosyn encoders), and continual measurement of
the location of the ball centers as well as the changes of preload and friction
torques in the direction of rotation.

Structurally, the flexure consists of a hub with a bore which accepts the
stationary retainers. The outboard end of the stationary retainers, after appropriate
alignment schedules, are clamped to the flexure hub. The hub is supported by three
flexure elements located 120 degrees apart. Each element has a cross sectional
area of 0.10x0.75 inches with the larger dimension perpendicular to the rotational
axes. The outboard end of the flexural elements have a solid section of which four
sides are flat and are guided by mating surfaces of the two-section housing sleeve.
The outboard section of the flexure terminates with double threaded boss. The
internal thread is used to provide radial tension to the flexure members by pre-
loading them to the housing sleeve and outer thread is used to lock the preload
bolt to the sleeve and at the same time preload the bolt to tensions larger than
those applied to the flexure elements. The latter aspect is useful in providing
additional torsional rigidity when needed.

6.1.2.3  Gimbal Caging Mechanism

The gimbal suspension is provided with a caging stops system which protects
the bearings and the payload from exposure to excessive stresses by introducing
mechanical components in parallel -with the element of interest during phases of
abnormal excitation. The introduced elements are always of higher structural
stiffress than the principal elements of interest. To affect caging conditien, the
drive motors must rotate their payloads an angle greater than 45° and- 15° for the outer
and inner gimbals, respectively. The motors are required to maintain the caged
condition (note that other concepts such as detenting are also feasible for the
subject design). At the caged region, six sector elements of the rotating members
are allowed to approach their mating components on the stationary portion of the
gimbal to within 1.5x10'3 inches. Such arrangements during abnormal excitation
periods provides three directional restraints and snubbing of the payload after
nominal deflection of the preload flexure. For the baseline design,the load dis-
tribution between the caging mechanism and the bearing balls is in a ratio of /10
such that forces not greater than 40 1bs will be absorbed by the bearings. Because
the 1ine of contact between the ball and the retainers nutates as a function of
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displacement, for the chosen caging concept (which requires excursions greater than
the operational angular displacements), brinelling (should it take place) occurs
in the circle of contact regions which are never operationally used.

6.1.2.4 Data Link

The data 1ink provides transmission of electrical signals without excessive
restraint torques. The design utilizes an "S" folded conductor strip which is
attached at the ends of and slides between a cylindrical stationary member attached
to the housing sleeve and a smaller diameter cylindrical component (the rotating
member) attached to the motor shaft. The inner and the outer members are lined
with nylon rings to provide electrical insulation and mechanical guide for the
rolamite action of a & conductor strip. There are four such strips providing the
capability of + 60° motion with restraints not exceeding 1/2 in-oz. Both the
stationary and the rotating members of this assembly are made from beryllium
Appropriate electrical connectors (miniature) are attached to the-periphery of the
rotating and stationary component. The data link itself is so designed that it
can be removed from the system without disturbing the various electrical inter-
connections,

€.1.2.5 Drive Motors

Each gimbal motor drive assembly is identical in performance and general
configuration. It consists of a two phase permanent magnet motor and appropriate
support structure. The motor has 24 poles and 4 skewed slots between pole spaces.
The commutation to the motor is provided by the Inductosyn resolver signal which
is conditioned to provide the required power in terms of sine and cosine functions
with periods satisfying the number of poles (12 speed). Interconnecting of the
sine and cosine inputs to the respective motor winding results in a brushless
motor exhibiting DC torquer characteristics. Each gimbal drive (two drives for
each gimbal) was sized to provide redundancy such that one motor can drive the
expected loads. The two motor drive concept not only satisfies the thermal symmetry
design criteria, but also can provide almost complete elimination of motor slot
ripple by appropriate indexing of the motor set.
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6.2

6.2.1

SENSOR ELECTRONICS ASSEMBLY

The Sensor Electronics Assembly controls and drives the motors of the star
tracker gimbal and provides the electronics to encode the gimbal angles from
the inductosyn signals. Figure 6-11 shows a block diagram of the SEA for one
gimbal axis (the excitation and some of the mode control circuitry are common
to both axes). The Encoding Electronics has as its function the processing of
both a multi-speed and single-speed inductosyn to produce a precision measure
of gimbal angie, and to develop a rate signal for local damping of the motor.
In slew the motor is driven at a rate specified by the computer. In track
mode the star sensor error signal is used.

Encoding Electronics

Angle encoding is accomplished by driving the inductosyn rotor with a Tow-
distortion sinusoidal 10 kHz signal. The inductosyn stator produces a pair of
signals at the same frequency whose amplitudes are respectively proportional
to the sine and cosine of gimbal angle. For high precision, the particular
inductosyn used has a single-speed and a 360-speed section on the same disc
pair. Both are encoded to produce digital angle data.

Because of their low level the inductosyn signals are first amplified by
a set of d.c. amplifiers Tocated on the gimbal in the immediate vicinity of
the inductosyn. The sing]e-speéd and the multi-speed encoders convert the
incoming sine-cosine amplitude data into a digital position output using a
form of double-angle phase technique. Each encoder is mechanized as a pair
of trigonometric phaselock loops. An analog rate signal is also developed for
local damping of the motor.

6.2.1.1 The Inductosyn

The inductosyn is a pair of discs, in this case 7" in diameter, which are
mounted such as to rotate coaxially with respect to one another with facing
surfaces in close proximity. The facing surfaces have printed conductors, form-
ing winding circuits which may be flux Tinked, disc-to-disc. One disc, desig-
nated the rotor, has a single winding; the other, the stator, has two windings.
The winding geometry is arranged so that the transformation coupling from rotor
to stator varies trigonometrically with relative disc rotation. The two stator
windings are in mechanical quadrature to one another. Thus the device is
electrically identical to a synchro resolver, except for a very low coupling
efficiency and for a larger number of poles than are normally found in a con-
ventional resolver.
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In the present case, the inductosyn to be used has 720 poles. Hence,
one degree of mechanical rotation carries the rotor through 360 electrical
degrees. If the two rotor windings are respectively jdentified as the sine
and cosine windings, then their output voltages are

=
1

kaSin 360 s Sin wet

-~
It

kaCOS 360 g Sin met

where the primary {rotor) voltage is
Ve = VmS1n met

and where k is the inductosyn transformation ratio (some very small fraction
of the order of 1/1000), 8 is the relative disc angle, and Wg is the excita-
tion frequency.

Since such a device can indicate angle unambiguously over only a one-
degree range, an additional resolver section is placed on the same discs, this
one forming a 2-pole resolver. Encoding a disc angle then consists in encod-
ing two resolver sections separately and combining the results in such a way
as to yield a single unambiguous datum.

Table 6-3 lists electrical characteristics for a typical PPCS prototype
inductosyn. Of particular concern are the values of voltage attenuation. The
inductosyn transformation ratio has the characteristics:

where s is the disc-to-disc spacing, and A and b are arbitrary constants.
From the data in Table 6-3, the respective sections have transformation ratios:

-0.0869s

k, = (2.265 x 107)e

1

kygo™ (120 X 1073)e~0-877s

where s is in units of thousandths of an inch. The nominal design spacing is
0.007". Hence :
1.235 x 1073

-~
L}

-~
L]

0.652 x 1073
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Table 6-3. Inductosyn Data, S/N Q02

Data taken at 10 kHz.

Fine Coarse
720 Pole 2 Pole
Rotor Impedance 15.5 + j2.6 1.313
Stator Impedance 5.5 + j1.2 S];gg gzigg
Phase Shift 89° 75°
Accuracy +1.6 sec _ +18 min,
Voltage Attenuation:
Rotor Excited
0.005" gap 1290 680
0.070" gap 2000 1050
Stator Excited
0.005" gap 420 --
0.010" gap 200 --
Coincidence at Sine Z.C. 8 minutes

Table 6-4 evaluates transformation ratios for spacing from 5 to 10 milli-inches.
A spacing of 7 mils has been selected.

6.2.1.2 The Excitation Section

The Excitation Section provides drive to the inductosyn rotors at a fre-
quency of 10.5 kHz and a nominal power level of 2 watts per rotor. Figure 6-12
shows its block diagram. A precisely controlled frequency of 1.26 mHz, gen-
erated by a crystal oscillator, is divided down with a modulo of 120, result-
ing in the desired 10.5 kHz. This is filtered to a high purity sinusoidal
function, which is thereafter power amplified to drive the rotors.

The rotors are hooked in a series-parallel arrangement. This tends to
equalize the power distribution among the rotors, partially compensating for
the impedance difference between the single-speed and the multi-speed windings.
In this hookup the multi-speed rotors still receive a greater share of the power.
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Table 6-4. Transformation Ratios

Single-Speed  ky = (2.265 x 107%) ¢70+086%
s(mils) e K,
5 1.54 1.470 x 1073
6 1.68 1.343 x 1073
7 1.84 1.235 x 1073
8 2.00 1.131 x 1073
9 2.19 1.037 x 1073
10 2.39 0.952 x 107
Multi-Speed ksgg = (1-20 X 1073) ¢70-0877s
3 rs
s{mils) i__ k360
5 1.55 0.775 x 1073
6 1.69 0.710 x 1073
7 1.85 0.652 x 1072
8 2.02 0.597 x 1073
9 2.20 0.547 x 1073
10 2.40 0.500 x 1072
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This is acceptable because the single-speed has a lower attenuation than the
multi-speed.

If RS is the impedance of the single-speed rotor and R is that of the
multi-speed rotor, then the total impedance is
£ " 2 RS + 172 Rm

Rto

For a given excitation voltage Ve the multi-speed voltage is

1/2 Rm
V= 3 R, + 1/Z R, Ve

The total current is
I, 4 = e
tot 2 Rs + 1/2 Rm

of which 1/2 suppiies one multi-speed rotor

(1/2) e
1 = ']/ P, ~
m 2 Rs + 1/2 Rm

The per unit multi-speed power is then

1/4 R,

P = v
m (2R + 172 Rm)2 e

2

For a given power in R the excitation voltage must be:

1/2

() e

For P = 2 watts and the values of Figure 6-12, V_ = 7.50 volts RMS. This
leads to the follawing voltage division for each element:

-
1]

0.92 volts RMS

5.65 volts RMS

-
H

6.2.1.3 The Preamps

Because the inductosyn output signals are at such low level, adequate
signal transmission to the relatively remote SEA requires preampiifiers
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located on the gimbal in the immediate vicinity of the inductosyn. There are
two pairs per inductosyn. Each preamp has a nominal gain of 100. The domin-
ant requirement is that a Sine/Cosine pair have as nearly identical amplitude
gains as possible. In a flight application high precision components would
be utilized. A gain match of + 0.01% seems entirely feasible.

6.2.1.4 Phaselock Loop

The heart of the inductosyn encoding technique used is the quadrature
phaselock loop. To study the action of this type of loop, first consider the
simplified, non-quadrature phaselock loop pictured in Figure 6-13. The input
sinusoidal function has a frequency of 10 kHz. This is chopped by the phase
detector by a switching function, Qf, which is the most-significant bit of a
binary counter. The functioning of the phase detector can be represented as

 that of a switch (electronic in actuality}»whieh-1snepen.£or,Qf-= 0 and closed
for Qf = 1.

The phase detector output is filtered to recover its DC component and the
result is applied to the input of a voltage controlled oscillator. This has a
characteristic as shown in Figure 6-13. With a zero volt input it has a nominal
output frequency of 5.12 mHz for this illustration. Positive or negative input
voltages cause increase or decrease in the frequency up to some saturation

Timits.
¥Co
CHARACTERISTICS
fo -~ -
|
|
. Vf
PHASE -—0 —+
N DETECTOR :
V_sin ut Vo |Ts v f
m P f vco 0
10 kHz o————0 ~o 55 "15.12 mHz

]

|

oy

| °f FEEDBACK COUNTER

MODULO 512
10 kHz
I
Figure 6-13, Basic Phaselock Loop
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The VCO frequency is divided by a factor of 512 by a 9 stage feedback
counter. The nominal frequency of the counter output, Qf, is therefore 10 kHz.
Figure 6-14 shows the phase detector output for three different phase relation-
ships between the Toop input signal and the feedback counter. The condition
in Figqure b 1is stable., Note that here the phase detector output, vp, has an
average value of zero. In Figure a the counter is displaced in phase by
-45°, The resultant v_ has a net negative average value. After filtering,
this net DC component causes the VCO to decrease in frequency so that the
counter loses in phase until the relationship of B is achieved. Figure ¢
illustrates the opposite case, where the VCO will speed up, gaining in phase
to achieve the condition of B.

If the input signal is:
Vi ® V. Sin wt

and if the relationship of Figure 6-14b defines zeré relative phase, then the
phase detector for any relative phase ¢ can be described as:

v for(¢+-gl)5wt5(¢+%)
v =
0 for (¢ + %.) <wt < (¢ + %ﬂj
Then the DC component of Qp is
: ¢+% 'i ¢+%
Vp:l: 5 -[V1dt= '2—.”- f VISS'“'I wt d(mt)
3 25
be ¢+éj— ¢+2
v
_om s
=7 Sin ¢

This phase detector characteristic is shown graphically in Figure 6-15.
It is to be noted that there are nulls for ¢ = 0 and for ¢ = n. But for the
chosen loop sense the one at ¢ = r is unstable, i.e., a slight perturbation
will send the loop one way or the other toward the null at ¢ = 0 or 27.

We turn now to the quadrature phaselock loop, 1llustrated in Figure 6-16.
There are now two inputs, assumed to be the outputs of a resolver such that
their amplitudes are trigonometrically related to a mechanical shaft angle e:
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<
il

Vm51n 8 Sin wt

<7
L]

VmCos g Sin w

The feedback counter now has two outputs:

1 for (¢ + %E <ut < {4+3)
Q.F'

Ofor (6 +1) <ut < (p+38

1 for (¢ +7 ) <wut < (¢+ 2n)
Rf={

0 for b <ot < (¢ + 1)

i.e., Rf is of the same frequency as Qf, but is retarded in phase by 90°.

The Qf switching function is used to drive the cosine section of the phas
detector, and the R1c function is used for the sine section. The DC component
of the output of the cosine section is

™
Pty
Vpc] = ;—ﬂ f V.Cos 6 Sin wt d{wt)
DC 3n
¢+ 5
v

= -Msin e Cos b
Ll

while the corresponding member for the sine section is

vps] -

be

+ 27

VmS'in 8 Sin wt d{ut)

™Y —
2y

¢t

v
=-—m51'neCos¢
T
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When the two are summed equally inte the filter

‘-'!|<Z

v;] = B [sin ¢ Cos & - Cos ¢ Sin o]
Oc

E | 13<

Sin (¢ - 8)

The form of this phase detector characteristic is identical to that of
the simple loop, except that instead of tracking the input at zero relative
phase, the feedback counter now tracks at a phase dependent on the resolver
shaft angle. The loop forces the function Sin (¢ - 8) to null. Hence, ¢ = 6.
As the inductosyn rotates, the feedback counter changes its phase correspond-
ingly,

The phase of the counter is measured simply by sampling its numerical
contents each cycle at some reference instant. If the resolver were ideal,
this reference instant could be derived as the positive zero crossing of the
resolver excitation voltage. But because of slight variations in phase shift
across the resolver, it must be derived from the resolver output set. One
method would be to detect the positive and negative zero crossing of both
outputs, and logically select one of the four based on the relative signs and
amplitudes of the signals. This is somewhat clumsy. The alternative is to
make two opposite loops, ore which tracks with a positive ¢ and one with a
negative ¢. For the loop described above ¢ = 6. By a simple change of switch-
ing functions from the feedback counter it is possible to get a phase detector
characteristic:

Y
]
For this loop ¢' = - 8. The phase difference between the two counters is then
2. The readout can be mechanized such that one counter is sampled when the
other is at zero phase.

v
v'] = ;9-51n (¢ + a)

The two-Toop system is a so-called "double angle" encoding technique. It
has the advantages that many system errors are effectively compensated and that
common circuit designs are used for both loops. Its disadvantage,in some
applications,is a factor of 2 redundancy where encoding is required over 360
electrical degrees. Figure 6-17 describes the phases of the two counters, ¢
and ¢', for some arbitrary angle. For zero angle the two vectors are vertical
and diverge for positive increasing angle. Encoding in effect consists in
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measuring the phase ‘difference between the two counters, equal to 28. But
after 180 degrees the phases are again coincident, and the range from 180
degrees to 360 degrees cannot be distinguished from that between zero to 180
degrees without additional mechanization. Fortunately, in this application,
the encoding range of the multi-speed section can be over 1/2 degree (180
electrical degrees}, with the "splice" in data to the single-speed section at
this Tevel. And the range of travel of either gimbal axis is less than 180
mechanical degrees, hence ambiguity resolution is unnecessary in the single
speed section.

6.2.1.5 The Multi-Speed Encoder

The multi-speed encoder, containing two opposite phaselock loops, is
shown in Figure 6-18. Each loop is of the basic form previously described, with
one notable exception. The positive loop-operates-with—its feadback counter
having a slightly different modulo {division factor) than that of the negative
loop. This permits the vernier logic to extract approximately 5 additional
bits of encoding resolution.

It is desired to encode to a resolution equivalent to 1/4 arc second.
Taking account of the inductosyn speed ratio and the 1/2 degree double-angle
range of the multi-speed section, this amounts to dividing 1/2 degree into
some 8,000 parts. Since 1/2 degree is associated with one cycle of the signal
10 kHz, this means that the counting rate would need to be about 80 mHz if the
encoder were mechanized by direct conventional means. This frequency is not
practical for presently available logic elements suitable for spacecraft appli-
cation.

Instead, the required resolution is obtained via a vernier technique,
The positive feedback counter has a modulo of 8 x 31, while the negative counter
has a modulo of 8 x 32. Thus, the resolution including vernier interpolation
is 8 x 31 x 32 = 7936. Meantime, the VCO frequencies and the counter rates
are kept at a manageable 2.5 mHz.

In essence, angle readout consists in measuring the relative phase of the
feedback counters. For the 8 most-significant bits, this is done by extracting
the contents of one counter at the instant when the other counter passes zero
phase, i.e., when its MSB falls from ONE to ZERO. The vernier provides addi-
tional resolution as required. Mechanization involves comparing the relative
phases of the two VCO's and noting the contents of the low-order end of the
two counters at the instant of coincidence.
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6.2.1

6.2.1

Auxiliary to the task of angle encoding, the multi-speed encoder provides
a rate signal output. The details of this aspect will be discussed later, as
will guestions of Toop dynamics and accuracy.

.6 The Single-5peed Encoder

The single-speed encoder is entirely similar to that for the multi-speed,
except that it receives as inputs the single-speed inductosyn signals. It has
different feedback counter moduli, and therefore different VCO frequencies,
and it has no rate signal development.

Because it also is a double-angle system, the total encoding range is 180°.
This range is encoded to a resolution identical in weight to that of the most-
significant bit of the multi-speed encoder - 1/2 degree. Thus, there is one
redundancy or "overlap" bit in the total data determination. In_this way ,
the classic two-range encoder ambigu%ty, fésuﬁ%ing from slight offsets between
the two encoders is resolved. The method involves adding +1, 0, or -1 to the
high-order data field, based on a logical comparison of the bits at the data
splice.

The feedback moduli are 8 x 9 x 10 = 80 respectively. Thus the VCO fre-
quencies are 720 and 800 kHz. The venier is mechanized against the 9 and 10
submodulo factors, so that the net resolution is 8 x 9 x 10 = 720.

.7 Loop Dynamics

Each of the phaselock Toops is a phase serve, and as such, has certain
dynamic stability considerations involved with the gains of the various elements.
These elements are the phase detector, the loop filter, and the VCO.

The earlier derivation leading to phase detector characteristics can be
used as a basis to determine the phase detector gain, except that the actual
detectors are full-wave and must therefore be adjusted by a factor of 2
(a half-wave detector was used for simplicity of illustration in the basic
discussion). The DC component of a full wave detector is therefore '

2Vm ]
Vp] = —TT—S'IH (¢ - 6)
DC

where Vm is the equivalent peak value of.the compound signal input, 6 is the
electrical input angle, and ¢ is the relative phase of the feedback counter.
Since the loop tracks such as to force this quantity to zero, it is justified
to use the approximation:
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Sin x = X for x small

Hence, for purposes of dynamic analysis the phase detector gain is:

2Vm
Ky = (volts/radian)

d
The design of the VCO permits considerable latitude in gain choice since the
basic circuit is extremely high-gain, and must incorporate an input voltage
attenuator. Since a rate signal is to be developed from the VCO input voltage,
it is desirable to choose the‘gain as low as possible. However, it must be
large enough to accommodate for VCO internal frequency drifts due to component
variations. If the VCO's center frequency (grounded input) shifts by 10%, the
frequency gain must be large enough that the prior stage is able to remain
within its unsaturated voltage output range and still force the VCO to the
proper frequency. The gain is therefore chosen in the vicinity of 1%/volt.
Referred to the input of the phase detector, the VCO gain is therefore

K 0.01 w

0 _ e .
3 - ———;—~—-(rad1ans/vo1t)

Note that the gain is that of an integration with respect to frequency, since
the variable of control is phase.

The loop filter functions to adjust the behavioral properties of the loop
as desired. Acquisition (achieving phaselock), errorless response in the
presence of shaft velocity, and a usable rate signal require double integration.
Adequate phase margin dictates a zero prior to unity overall gain {open loop).
Finally, additional poles are required beyond unity gain to reduce the unavoid-
able second harmonic (20 kHz) component in the output of the phase detector.
This component results in a phase modulation of the ¥CO and hence a departure
from encoding linearity to the extent that it is allowed through the loop
filter.

Figure 6-19 shows a proposed opeh—]oop dynamic design. There are two origin
poles, one due to KO/s characteristic of the VCO and cne in the loop filter.
Z
filter, where P3, 94 are a doublet pair at 2 kHz with a damping ratio of 0.7.
The loop bandwidth is 200 Hz (unity gain point). The phase margin is 56°
and the gain margin is about 14 db. Of spécial interest is the fact that the
20 kHz attenuation is in excess of 100 db or 1:105, compared with the multi-
speed encoder  resolution of the order of 1:104. Hence, the second harmonic

is a lead at 25 Hz in the loop filter. P_is a simpie lag in the loop
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error due to the phase detector is reduced to insignificance.

A classic problem associated with phaselock loops is acquisition of phase-
Tock. A first-order loop cannot acquire if the VCO differs from the input
signal by an amount greater than the loop bandwidth. With a second-order loop.
acquisition is possible with frequency differences many times the loop band-
width. The pull-in time can be obtained as:

N
p 2 3
Ewn

where Aw is the frequency difference and W is the loop bandwidth.

Using the design choice as discussed for the VCO, the frequency difference
cannot be greater than 10% of 10 kHz. With a 200 Hz bandwidth, this loop will
acquire in about 1/100 second.

6.2.1.8 The Rate Signal

A rate signal is derived from the VCO input voltages of the multi-speed
loops. If the input signal to the multi-speed encoder is

v

5 VmS1n 360 o Sin wet

<
1]

VmCos 360 6 Sin wet
but if there is some shaft rate W > then

a(t) = wt + 8,

Substituting:

<
L]

VmSin 360 (mst + eo) Sin wot

<
L]

VmCOS 360 (wst + Bo) 5in wt

The ensuing discussion is valid for any 8. It is much simplified by taking

Bo = 0. Then

=

_ . . - _'I'ﬂ_ Y
vg = V;Sin 360 w .t Sin w,t =5 [Cos (w, - 360 ws)t

- Cos (me + .350 ws)t]
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MI =<

v, = VmCos 360.w5t Sin ut = [Sin (me - 360 ws)t

- Sin (me + 360 ws)t]

In other words, shaft velocity causes a double-sideband modulation of the
excitation carrier frequency. With a double-angle system, one loop tracks the
upper sideband and one the Tower. As a result, one VCO exhibits a positive
frequency shift, while the other exhibits a negative shift for a given velo-
city sense. Because of the speed ratio the magnitude of the shift is 360 wg
in each. If the VCO frequencies shift, their input voltages must have changed
some AV to cause such shift. The difference in the voltage shifts is

where K0 is the radian frequency gain of the VCO, taken previously as corres-
ponding to 1%/volt (Note: the strategem of using percentage frequency units
permits us to speak of the VCO gain at the input and the output of the feedback
counter in the same breath).

K(J = 0.01 wy = 0.01 (2r fe)

For shaft rates expressed in degrees per second, d:

-
1]

720 (555 d) 1/[0.01 (2n £,)]

200 d/f, = 2 x 10724 (volts)

In the track mode, rates of the order of 0.1 degree per second are
expected, while slew rates will be some 10 times greater. Hence, respective
signal amplitudes of 2 and 20 millivolts can be expected.

It was stated previously that one or the other VCO input voltages could
change by several volts due to internal oscillator drifts. However, these
drifts can be expected to occur very slowly, since they are the result of
ageing and thermal effects on components. Since the gimbal servo local (SEA
internal) rate feedback is intended only for stabilization in the upper fre-
quency portion of the bandwidth, the rate signal can be filtered with a band-
pass extending from about 0.2 Hertz to about 200 Hertz, rates below 0.2 Hertz
being covered by the computer. Thus, any spurious DC components due to VCO
drifts will be filtered out. In addition, a passband gain of about 100 is
required to amplify the rate difference to usable levels.

6-46



6.2.1.9 Accuracy

In discussing accuracy for this system, attention will be confined to the
multi-speed encoding process. Obviously, the single-speed section needs to be
only accurate enough to fill in its portion of the data field unambiguously.
Furthermore, only electronic accuracy will be treated here. For convenience,
the discussion will at first be in terms of electrical angle, ignoring the
speed ratio 360 of the multi-speed inductosyn. Finally, much of the discussion
will not be exact. For the most part we will merely attempt to bound the errors,
dealing in orders of magnitude.

Table 6-5 identifies the principle potential error sources, their nature,
and an assignment of the expected magnitude of each. In some cases, notably
Adgy and Ady s the formulas are merely intuitive bounds, since the exact analyses
have not been attempted. By the nature of an error is meant the form that a
graph of the error as a function of shaft angle would take. Some are constant
with & and some are cyclic.

Table 6-5. Encoding Errors

Error Type Form Nature Magnitude (Electrical)
Excitation harmonics Agy < A%- Harmonic 2 x 10'4 rad
. _ aC . -3
Cross coupling g, = 1/2 © Znd Harmonic 10 ° rad
Trig gain unbalance By = 1/2 é%— 2nd Harmonic 2.5 x 10”4 rad
Phase detector offset Apy = %! Dffset 2 x 1074 rad
d
Phase detector harmonic Ay < Fo(s) 2nd Harmonic 10'5 rad
Phase servo error A¢p = %9- Offset 3 x 1077 rad
v
TOTAL 20 x 1074 rad
107! degree
6 minutes

360-Speed Equivalent 1 second

6-47




It is known that the phase tracking is sensitive to distortion of the
excitation vo]tagé waveshape. For example,square wave excitation will des-
cribe a triangular error function. The details of this phenomenon have not
been analyzed. It is sufficient to say that the radian error can certainly
not be greater than the distortion ratio. Quantitatively, it seems reason-
able to expect that the total harmanic content of the excitation can be
Timited to 0.02%.

In any resojver system, care is taken to provide isolation between the
sine and cosine channels. Cross-coupling causes a second harmonic error.
The cause is similar to that for gain unbalance, analyzed below. Cross-talk
isolations between shielded conductors are typically of the order of -90 db/ft.
If a factor of 20 greater than this is allowed for length, connectors, etc.,
the magnitude of A¢,. is estimatedrat“10'3 radian.

Prior to phase detection the inductosyn signals are amplified by the
preamps and buffered at the input of the main processing electronics. The
phase detectors themselves involve active gain processing. Each of these
circuits is a potential source of gain unbalance and thence of error. If the
inductosyn output signals are:

VS =¥ 5in 9, Vc =V Cos 8
then after preamplification the signals are

VS = ksv Sin 8, VC = kCV Cos B

where k is the net gain of each channel. The problem is to find what is the
disturbance of the angular information content of the signals if kS # kc.

Inherently:

-~

-1 kS Sin s

1
- -17s _
g = Tan i Tan kc Tos &

C

The sine and cosine can be represented as Cartesian coordinates.

y = Sin 8

X = Cos 8
This error analysis will utilize the method
a = 22 ay + 28 4y
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The expression for o:

=

_ Y
G=Tan1—kis—
c

is differentiated ksy , ksy
D+gdd - des
c c

de
kxy dig - koxy dk

2 2

(ks + (koy)

But since the nominal k's are equal,

o X akg - ak
2yl K -

By substitution:

_ Sin g Cos @ akg - Ak
A8 = "5 ) K
Sin"e + Cos™s

. 5 C
E—S1n 20—

C

If the gaih variations are represented as:

Aks = ks - k, Akc = kc -k

Then

k. -k
_ 1 s 5 s
AB = 5 Sin 28 I

The units are radians. We see that the error due to gain unbalance is
a "two cycle per cycle" function with absolute value maxima at 45°, 135°,
etc. or, for the multi-speed inductosyn channel, at 1/8, 3/8, 5/8, and 7/8
degrees. The amplitude in radians is proportional to the percent gain
unbalance: '

8o = ks~ K
max 2k

As discussed in a previous section, a gain balance within 0.01% per amplifier
seems feasible. We take the figure 5 x 10'4 to allow for several sources.
The net contribution is then 2.5 x 10'4 radians for A¢g.

Phase detector offset has the effect of introducing a spurious phase
arror. This is best understood by reference to Figure 6-15. If a small DC
is imagined summed with the function, a vertical shift occurs. The magni tude
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of the accompanying horizontal phase shift is proportional to the phase
detector sliope, i.e., its gain Kd, as given in Section 6.2.1.7. The source
of this DC is input offset drift in the operational amplifiers used for the
phase detector and/or the loop filter. A typical instrumentation operational
amplifier exhibits offset voltage drift of the order of 10-6 volt per °C and
10']0 amp per °C. Allowing a source impedance of 10 k ohms, the net voltage
drift is about 2 x 10"6 per °C. Allowing a 50°C temperature range and several
sources indicates an error voltage of about 2 x 10‘4 radian.

Error due to phase detector second harmonic has been discussed in a
previous section. Because of the special Toop filtering techniques employed,
its contribution is negligible.

Phase servo error is analogous to the classic “gain-slope" error in any
servo. " I'n this case it is given by o T T T T

A

Ag = o
p KOKdFIOi

where Aw is the VCO frequency drift, Ko the VCO  gain constant, Kd the phase
detector gain constant, and F(0) is the DC gain of the loop filter. This
latter would be infinite if the "origin" pole of the loop filter were a per-
fect integrator. Practically, this value limits at the open-loop gain of the
operational amplifier used to mechanize the filter, about 90 db. Using
orders of magnitude

Am/Ko = 10 volts
Kd ~ ]
F(0) =~ 3 x 10
Then
-4
= 3 10
¢p X

The simple sum error of all system contributions is about 2 x ]0'3 radians

or 6 minutes, single-speed equivalent. The 360-speed equivalent thereof is
one arc second. The greatest contribution is that due to cable cross-coupling.
Unfortunately, this is the most difficult to get a confident analytic handle
upon,

It is to be noted that this error discussion has relied on certain
engineering assumptions with respect to its primary input data. Elements
such as harmonic purity of a signal, shielding isolation, achievable gain
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6.2.2

balance, etc. are extremely difficult to estimate. Therefore, the error
analysis can be expected to yield merely a gross indication of system accuracy.

Motor Electronics

The signal processing and power management required for driving the gim-
bal motors is designated the motor electronics. The processing consists of
signal selection, based on mode, conditioning of the rate signals for combin-
ing with the primary error input; power management consists in forming the
torque vector components to be applied to the respective windings, and power
amplification of these to a level suitable for the given motor.

The servo error input is selected either from the star sensor signal or
from a computer commanded quantity, depending on mode. Selection is made by
an analog switch.

Considerations in filtering the SEA local rate, derived from the multi-
speed inductosyn encoder, have been discussed in a previous section. The
filtered quantity is combined with the computer rate and inserted into the
frequency compensating preamplifier for servo damping. The preamplifier mech-
anizes the required gain-frequency transfer function desired for overall servo
dynamic characteristics. The transfer function js essentially that of an
integral plus propartional.

The output of the preamplifier can be somewhat identified as signifying a
desired motor torque magnitude. If the motor were a simb]e DC torque type,
this signal could be applied directly, assuming a suitable power level. However,
considerations of weight and efficiency have dictated the choice of a two-phase
muiti-speed motor. As a conseguence, vectorial processing of the motor  tor-
que angle is required.

Consider first the case of a single-speed, two-phase motor. The stator
has two windings upon four poles. Current applied to one winding produces an
internal flux in, say, the 0° - 180° direction, depending on the current direc-

~ tion. Current in the other winding causes flux along the 90° - 270° axis.

Thus, it is possible to produce a flux vector in any direction by varying the
direction and magnitude of the currents within the two windings. The rotor
has a two-pole permanent magnet which reacts against the electrical field to
produce torque. For a given field strength, torque is a maximum when the
field direction differs from the PM fiux direction by 90°. Thus, to produce
continuous rotation with constant torque, the field vector must be rotated so
as to always lead the rotor flux direction by 90°, but its magnitude must be

b-41



kept constant. This implies that the winding currents must be varied in a
trigonometric manner as a function of the shaft angle. Whether accomplished
electronically or by carbon brushes and segments, this process is referred to
as commutation.

A multi-speed variation on this device merely adds more poles, such that
a complete electrical revolution carries the shaft through only a fraction of
a shaft revolution. It is functionally equivalent to a single-speed motor with
a step-down gearhead. In the present case the speed ratio is 12.

The brushless motor drive requireé the formation of the sine and cosine
of 128, & being the shaft angie, to control the relative direction of the
motor field vector, and the multiplication of these quantities by the servo
error variable to control its strength. Figure 6-20 indicates the funct1ona1
mechanization of the motor drive circuitry. Shaft position in digital form
from the inductosyn processing is converted to trigonometric coordinates by
the sin/cos logic (Figure 6-11) and applied to the switch inputs of two simple
digital-to-analog converters. The servo variable is applied as the converter
reference voltage input. Since a D/A converter has a transfer function of the

form
N

- _z: 1
Vout - Vr L Dn N

n=0

where V is the analog reference input voltage, usually a constant but here
a var1ab1e, and where the converter has binary digital inputs D 01 -—-
Dn = DN’ then the operation is that of multiplying an analog quant1ty by a

digital quantity.

The multiplying D/A converters are quantized to 0.5 shaft degree, or 6
motor electrical degrees. If the motor commutation rule of 90° leading flux
vector is violated, the torque varies as a cosine function of the electrical
angular departure from ideal. Hence, some variation is tolerable. Advantage
is taken of this to simplify the sin/cos logic. The digital functions are
formed as “"stairstep trapezoid" approximations to the time trigonometric func-
tions. Figure 6-21 is provided to study this situation, The "sine" and "cosine"
functions consist of ramps with linear portions 60 electrical degrees wide and
flat tops 30 electrical degrees wide. Amplitudes are 24 steps peak-to-peak,
indicating 5 bit D-A converters. The cycle interval is 30 shaft degrees.

Also shown is the analogous "Lissajous" pattern into which the combined func-
tions are mapped as the motor field vector versus electrical angle. The ideal
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case, true sine and cosine, would map a perfect circle. With the approximation
described, an octagon is traced. (Note that this description is normalized to
unit servo error input magnitude.) The departure from a circle whose radius is
a mean of the octagon radii is + 4.3%. This is then equivalent to the torque
ripple which will be experienced.

The motor is rated at 18 volts nominal, 6 watts per winding, or 0.8 x
2 x 6 - 9.5 watts for peak excitation at 45 electrical degrees. It has been
elected to utilize linear (vs proportional duty-cycle switching) motor power
amplifiers. Although the efficiency of this type circuit is poor, operation
at high power levels will occur so seldem that recourse to the complexity of
higher efficiency circuits does not seem warranted.
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6.3 GYRO REFERENCE ASSEMBLY

This section presents the functional design considerations associated with
the gyro reference. Three areas were of particular interest, namely: configuration,
gyro instrument selection, and Toop electronics design. These are treated in the
sections which follow.

6.3.1 Configuration

The gyro reference assembly is configured based primarily upon redundancy
considerations, as discussed in Section 4.4, and performance considerations which
will be discussed here. The configuration selected has each of six gyros positioned
with the input axis nominally perpendicular to parallel faces of a regular dode-
cahedron. This configuration is shown in Figure 6-22. The axes are aligned such
that the orthogonal attitude determination reference frame will be parallel to
three appropriate orthogonal edges of the dedecahedron. With this constraint, noné
of the gyro input axes will be parallel to any of the attitude determination ref-
erence axes. This arrangement is optimum for six instruments, because it minimizes
the effects of errors and failures on performance. In this configuration, no three
gyro input axes are coplahar so that the system is capable of operation with any
subset of three gyros.

It is apparent from Figure 6-22 that not all combinationhs of m out of 6
gyros will yield equally good performance. It is of interest to consider the
operating configurations (m operating out of the 6) and the effect of this operating
configuration on meeting the assembly performance requirements. Some of the possi-
ble combinations do not yield a well balanced spatial distribution of the input
axes and, as a result, the rate derived may be very susceptible to gyro errors.
To determine the relative advantages of certain combinations, it is advantageous
to compute the error covariance matrix of the gyro assembly errors and compare the
different combinations.

Assume that

where A is a 6 x 3 matrix whose rows are defined by the direction cosines of the
gyro input axes. Assume that the covariance of the measurement error is given by

T 2
E = I
[e & %

which identifies the error sources as uncorrelated with equal error statistics. In
this case, the least squares, weighted least squares, and minimum variance estimate
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sin a =[(5+f-5)/10]ﬁ-
cos a =[(545_/1014"

Figure 6-22. Gyro Input Axis Geometry {Dodecahedron Configuration)
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for w coincide and is given by

where
B o= (Ala)"! AT

The error covariance matrix for the estimate is given as
p = cgz(ATA)_1

] An analogous result is obtained by considering the results of Appendix C,

in this case considering the elements, v, representative of misalignment and scale
factor errors. The same assumptions are made, i.e., gyro misalignments and the
scale factor instabilities are statistically Tndependent and the gyro misalignments
and scale factor errors are 1ndependent1y and 1dent1ca11y d1str1buted Dencte the
2 and Gkr' Then it follows (from Appendix C) that the
covariance matrix of 8y is given by

respective variances by o_

_ T+ 2 Tl 2
Py = E[svsy ] = o, CC' + ok, DD

T

The square root of the diagonal elements of P, are, of course, the standard devia-
tions of &Y,

Consider initially the configufation which assumes all six gyros are operating.
This yields

1
Y Zgg

and all the v, ik are uncorrelated and their standard deviations are improved by
1/v2 = 0.707 w1th respect to the standard deviation of the individual gyro misalign-
ments, w1th scale factor instability already included. Note also, that even if

# ck . as long as these variances have the same order of magnitude, as is
a]ways the case, the off-diagonal terms of P will be so small that they can be
neglected and the elements of the vector &Y are uncorrelated with each other.

1t is noted that, in a similar fashion,

0 o Tl _ T .T
Lo ° E [6 bg (5 bg ) ] = tE [6 bg {& bg) ] T

9

=S

P

yields



where the individual gyro biases are assumed to be independently and identically
distributed with variance UbS- Hence, the potential improvement in accuracy due
to the redundancy in the dodecahedron gyro configuration is again 0.707.

Consider now the cases where less than all six gyros are operating. For
the case of operating three of the possible six gyros, there result 20 possible
combinations. Of the 20 possibilities, 10 combinations are relatively poor, in
terms of equivalent statistics, in comparison to the remaining 10. The statistics
for the better combinations are summarized as
1/2

= 2.036 P

Ms:  (tr PYV/2/1.732 = 1.175 5

RSS: (tr P)

For the remaining combinations,

RsS: (tr P)1/2 = 3.205 %

Rus: (tr P)V/2/1.732 = 1,905 g

If four out of six gyros are operated, there result only 15 combinations, but the
statistics correspond to that of three equivalent orthogonal gyros such that

rss: (tr P)V/2 = 1,732

RMs:  (tr PYV2/1.732 = 1.0

With performance being an important consideration along with redundancy, four gyros
are utilized for operation. A tabulation of the configurations and associated
"geometry" matrices and performance statistics is provided in Appendix I.

6.3.2 Gyro Instrument Selection

Precision gyros of the general type required for PPCS are available or under
development for a large number of current and/or future space programs. Of those
available, the subminfature inertial grade gas bearing gyros appear most suited
to the PPCS application. Table 6-6 lists parameters for subminiature high perform-
ance gyros. The GG334 and 25IRIG gyros are jncluded for comparison. Of these, the
Nortronics K76 has the largest production base and performance/reliability data
background, and is selected for the PPCS application. This unit is a single degree
of freedom gyro which has a ceramic hydrodynamic gas spin bearing operating in a
beryllium float. The float is constrained along the output axis by means of a taut
wire suspension system, The unit has a moving coil pickeff and a permanenf magnet

torquer.
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Table 6-6.

Gas Bearing Gyro Characteristics

Angular 1
Size Spin Power Mo%gntum RSE?$$( )
Inches Weight Watts g-cm-/sec °/hr
Subminiature
Honeywell GG134 1.5%2.8 6.4 oz 4. 50,000 .004
Kearfott Alpha III G| 1.4x2.5 10.2 oz 3.3 50,000 .002
Northrop K7G 1.6x3.25 10 oz 3.2 120,000 .002
Standard(z)
Honeywell GG334 2.5x4.7 11b 10 oz 3.5 200,000 .002
Bendix 25 IRIG 2.4x3.8 | 11bBoz | 6.0 500,000 | --

(1) From manufacturers data. Test conditions vary but these numbers appear to be
derived under comparable conditions.

(2)

Thare are approximately 10 other inertial grade gas bearing gyros available,

Most are heavier, some have smaller random drifts than those in the table.
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The reliability considerations were detailed earlier in Section 4.4. Com-
parative performance is deait with briefly here. There appears to be little differ-
ence in performance between any of the subminiature gas bearing gyros in a zero-g,
low vibration, temperature controlled environment. A1l of the gyros listed in
Table 6-6 meet the PPCS random drift performance requirement. A composite of drift
stability data from different sources is shown in Figure 6-23. Some of the data
is from analog torquer tests, some from digital, and the sampling methods vary.
Nonetheless, the curves are representative of GG334 and K7G performance, and show
considerable similarity between gyros. Figure 6-24 presents the same data in terms
of 1o integrated drift {attitude) data as a function of sample time. In both
figures, the mean value of drift has been removed and the values plotted are RMS
(one-sigma) randomness. Figure 6-25 is a typical histogram of K76 drift data.

6.3.3 Rebalance Loop Electronics

The primary electronics tradeoff is selection of pulse or analog rebalance
loop. Analog was selected after consideration of the factors discussed below;
however, it is clear that either approach would satisfy PPCS requirements.

Pulse rebalance offers several advantages in terms of both gyro performance
and electronics implementation. A binary rebalance loop with its fixed weight
current pulse operates the gyro at fixed torquer power and {theoretically) at one
point on the torquer response curve. For high rate torquing, this has obvious
gyro performance benefits. For PADS, with its low rates, this factor is less
significant. Electronics advantage include the use of saturating torquer drivers,
reducing component stress and thermal dissipation. A possible disadvantage of
pulse torquing is increased electronic noise; however, the analog approach uses
demodulators and cannot be entirely far from unwanted noise,

Analog rebalance provides a simple control loop which is easily analyzed.
Analog rate information is provided directly, an ogccasional advantage., Gyro
torquer harmonic nonlinearity effects of pulse torquing are eliminated, minimizing
the degree of interface “tweaking" required. This last factor, assuring ease of
gyro interchangeability, was of prime consideration in selecting the analog approach.

Since a digital output is required, the voltage-to-frequency converter (VFC)
is a key circuit element. Figure 6-26 shows a block diagram of the VFC. A pre-
cision integrator of the operational output is impressed upon a pair of level
detectors connected in parailel. Their individual outputs are either high or zero
depending on their output condition. One level detector is high when the integra-
tor output is greater than a reference threshold of +70 millivolts, otherwise
its output is zero, Similarly, the other level detector is high when the integra-
tor output is less than -70 millivolts, and zero otherwise. When either Tevel is
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high, the 1ogic connected to the level detector output commands a precision current
source and a current switch to provide a rebalance pulse of current to the input of
the integrator. The polarity of the applied pulse is determined by the sign of the
threshold that was exceeded, and the pulse start time and length are controlled by
the clock signal. The result is a pulse-on-demand feedback Toop which provides
constant area current pulses of the proper sign, in synchronism with the clock fre-
quency, which tends to hold the integrator output within the threshold values. The
VFC output consists of two pulse trains indicating that positive or negative current
pulses have occurred. Each output pulse represents a fixed amount of rebalance
charge applied to lower the voltage across the integrating capacitor. The result
is that the algebraic sum of the two pulse trains is proportional to the VFC input
volt-seconds, which in turn is proporticnal to the gyro input angle rotation. A
breadboard of the VFC has been tested for bias and scale factor stability.

Bias stability of the VFC with respect to time is shown Tn Figure 6-27.
This data was obtained over a period of 24 hours at laboratory ambient temperature
(73°F).

VFC bias stability with respect to temperature is shown in Figure 6-28. The
¢ircuit was placed in an oven and measurements were made at 75°F, 100°F, and 125°F.
The c¢ircuit was allowed to soak for one hour at each temperature before circuit
power was applied. Ten measurements were recorded at each temperature. Maximum,
minimum, and average data for each temperature is shown.

VFC scale factor error {pulses per second) versus output pulse rate for three
positive and three negative input voltages is shown in Figure 6-29. The temperature
sensitivity of the VFC scale factor is shown in Figure 6-30. Both positive and
negative input voltages were used during this test; the test temperature range was
from 100°F to 125°F.

The sensitivity of the VFC scale factor to changes in line voltage is shown
in Table 6-7, This test was conducted with constant input voltage (positive and
negative); measurements were made by varying one supply voltage while holding the
other suppiies constant. Data was also taken while simultaneously decreasing all
supplies,
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Table 6-7. VFC Scale Factor Sensitivity to Line Voltage

LINE VOLTAGE

INPUT VOLTAGE

SENSITIVITY IN PPM PER

tvDC) (VDC) % VOLTAGE CHANGE
15 10 0.8
-15 10 0.8
18 10 3.1
15 -10 1.2
-15 -10 0.8
18 -10 1.1
DECREASE THE 10V 6.6 PPM/%
MAGNITUDE
OF THE THREE
SUPPLIES -ov 28 PPM/%




6.4  ALIGNMENT SENSOR ASSEMBLY

The Alignment Sensor Assembly for PPCS was designed by Barnes Engineering
[ 16] under TRW subcontract. This section summarizes the functional design, trade-
offs, and design analysis. '

6.4.1 Functional Description

The Alignment Sensor Assembly will consist of a dual-axis measuring auto-
collimator cooperating with a plane mirror for measuring rotation about the two
axes transverse to the line of sight, and a dual-axis instrument used with two
dihedral (Porro) reflectors for measuring the "twist angle" about the line of sight
axis. The second axis of the latter instrument provides for cross-coupling compensation.

This is shown in Figure 6-31, where twist is defined as rotation about the
X¥-axis and transverse rotations are about the Y and Z axes.

The beam from the twist-rotation instrument is inclined to the axis about
which rotation is measured by as large an angle as the geometry of the mount allows.
Fitting of all necessary components inside the required ten-inch diameter results
in a maximum angular off-set of 1.6© The beam used in measuring twist-rotation is
made to traverse the system twice, however, and the resulting sensitivity of this
measuring channel is 1/18 that of the transverse channels. Note that this does not
mean that the combined error budget for X measurement jis 18 times as great as that
of the Y and Z channels, however, since some components of error apply with equal
force to each system.

A null measuring tracking autocollimator is used in each case, with optical
wedges which are rotated to deflect the return beams to a measured null. Measure-
ment of the wedge rotation provides the measure of the angular rotation of the
(remote) reference surface. This can be seen in more detail in Figure 6-32.

A source reticle and lens images the source on a collimating Tens to produce the
collimated beam. This beam then passes through two pairs of optical wedges (the
twist system also has two pair) each having the function of compensating and
measuring one mode of rotation. Initially the wedges in each pair are opposed and
the deviation of the first is cancelled by the second. The collimated beam proceéd;
without deviation and is reflected by the mirror {(or Porro for the twist system) and
returns to the autocollimator where it is imaged on separate detector reticles. The
reticles have an opaque area matching the source reticle so that, for no mirror
deviation, the return image is blocked by the opaque area and no error signal is
produced. Mirror rotation causes the image to move off center and produces an

error signal which s detected and used to drive the wedges. They rotate in
opposite directions and thus each pair produces beam deflection in only one axis.

The wedges are driven until the error signal is nulled - the rotation required is a

measure of the mirror angular motion. 6-72
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The veference which is to be monitored and which carries the reflectors will
be subjected to six degrees of freedom of translation and rotation. It is clearly
important to be able to measure each of the three rotations without errors associa-
ted with the other five degrees of freedom. If error contributions arise in a
predictable manner from the other motions, however, these can be removed from the
final output.

The systems described below are essentially free from coupling errors due to
translation, although combinations of all three rotations can give rise to predict-
able errors. When the rotations are large enough for the error contributions to be
unacceptable, they can be compensated for by manual or automatic computation means.
Small but finite imperfections in the dihedral angle and the surface flatness of
the remote Porro reflector, when combined with translation in the Z-direction, do
introduce significant errors in the measurement of X-rotation and become the limit-
ing contributions to the error budget.

6.4.2 Transverse Rotation Measurement

The possible approaches for the transverse measurement system are reviewed
briefly with comments as to the dominant reasons for rejecting those not used.

e Single-axis instrument with plane mirror. Consider a single-axis
: autocallimator designed to measure Z-rotation. Since the mirror will
also rotate about Y, we must recognize the fact that for a
Y-rotation of 0.5 degree at 120 inch distance, the reflected
beam motion at the autocollimator is about 2 inches. Therefore,
most of the beam would fall ocutside the autocollimator aperture
“and the response of the system would be seriously degraded.

e Single-axis autocollimator with Porro reflector. The chief
problem in this case is a coupling error introduced by
combined X-rotation and translation parallel to the axis of
rotation being measured. This has a magnitude equal to
t x X/D where t 1is the translation, X is the rotation, and
D the distance. Its maximum value is 7.6 se¢. A second
problem is that a measured component which should appear in
the output, representing the combined effect of rotation
about the two axes orthogonal to the one being measured,
does not do so when a Porro reflector is used. This term
can have a maximum value of 16 sec.

e Dual-axis instrument with Porre reflector. This is a trivial
case included for completeness but clearly not usable because
of insensitivity to one mode of rotation.

e Dual-axis instrument with plane mirror and single wedges asso-
ciated with each axis of rotation. This combination has
problems with stability, particularly when rotation has taken
place about both axes.
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The choice has been made by elimination, therefore, and points to the dual-axis
autocollimator with two independently operating pairs of contra-rotating wedges and
a plane mirror. An important feature of the selected design lies in the provision
for an analog error function output to supplement the wedge-resolver output. Thus
while the high accuracy of the wedge-resolver combination provides the wide measur-
ing range, a servo lag of several steps limits the obtainable accuracy.

As will be shown later, a lag of as much as 2 set can be realized in the servo
system. Therefore, a ramp function covering that range and representing the "raw"
error signal will also be read out and will reduce the uncertainty. By periodic
in-flight calibration, this ramp function can reduce the error to less than 1/4 sec.
Calibration will be obtained by disabling the serve and causing the stepper to
advance by a certain number of steps. The change in error signal will be observed
and divided by the angular equivalent of the steps to provide the scale factor
calibration. The procedure is slightly complicatéd by the fact that the relation-
ship between steps and angle is not constant, but varies from 0.6 set per step at
zero displacement to 0.3 at 60° wedge position.

The "s1it" and detector dimensions naturally have a strong influence on system
characteristics. In the transverse measuring system,the source reticle will be
0.005 inches square. This dimension is only 1/10 the maximum image size which
vignetting considerations would allow and, consequently, image intensity along the
edges is about 90% that at the center, which is favorable from the standpoint of
signal-to-noise. It subtends 200 se¢ at the objective lens and therefore the ramp
function of signal vs. deviation has that extent,

Each channel will include a pair of unbiased Silicon detectors which are
mounted on a common substrate (glass) and the active areas of which are separated
by 0.005 inch. Thus the image has a geometrical size equal to the gap between
detectors. This provides maximum stability in the presence of temperature and
aging effect.

The image, which is nominally equal in size to the source reticle, actually is
slightly increased by aberration and/or diffraction. The energy distribution across
the edges has the familiar sigmoid profile, but since there is some energy falling
on each detector at null, the ramp function of signal vs. angle has good linearity
even for small deviations.

In both the X and the Y-Z autocollimators the image will be held at the same
position on the detectors, both in the sensitive and insensitive directions. Thus,
inequalities of responsivity or Tack of straightness along the edges of the detectors
do not contribute spurious null shifts.
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The X-rotation autocollimator, however, has a somewhat elongated s1it. This
extra length provides more signal, which is necessary to giVe a satisfactory value

of signal-to-noise.

The length of each detector is the same in both systems in both the insensi-
tive direction and the sensitive direction. This will provide a small margin at
each end of the insensitive direction; the other dimension is designed as the
maximum which can be utilized for acquisition. At 120 inches, the reflected beam
will completely miss the aperture when the reflector has rotated through 0.0052 rad.
The displacement of the image at the focal plane is thus defined as 0.0052 for
0.026 in. The excursion which can be monitored is given by the sum of the image
width plus the detector width. Therefore, the detectors will respond when the
reflector is near enough to alignment so that the reflected beam is captured.

The detectors will be N on P silicon based on experience reported by Philco-
_Ford which shows this type to be substantially more resistant to radiation damage
in space environment than the more commonly used P on N. They will be selected for
responsivity matched to within 5 percent.

6.4.3 Twist Measurement

This measuring system includes the autocollimator and a "vertical" dihedral
(Porro) reflector at the base, separated as far as possible to give a large off-
axis "look angle" to the "horizontal" Porro reflector mounted at the plate. As an
aid in explanation, and with no loss in generality, it will be postulated that the
XY plane is "horizontal". The beam from the autocollimator irradiates the remote
Porro, which reflects the beam back to the Porro at the base. The beam is reflected
to the remote Porro for a second pass, then back to the autocollimator.

X-rotation of the remote plate generates a vertical motion of the reflected
beam at the autocollimator equal to 4 x sine & where ¢ is the offset or look angle.
With the dimensions permitted by the 10-inch diameter constraint, 6= 1.6 degrees.
X-translation will be insignificant, and Y-translation will be accommodated by the
aperture of the reflector, which is greater than that of the collimated beam.

7-translation, however, introduces two problems. First is the effect of
error in the dihedral angle which is normally 90 degrees. If the reflector is an
assembly of mirrors, the reflected beam is split by the roof edge into two segments
and they diverge or converge in the vertical plane by 4 times the dihedral angle
error. If the reflector is a priém, the divergence is 4 n e, where n is the index
of refraction and e the angle error. Since n will be about 1.5, the angle error
multiplication is about 6, and after the second traverse of the system, the diver-
gence between the two portions of the beam falling on either side of the roof edge
is about 12 e.
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The result is that two images will be formed in the plane of the detectors,
separated by an amount proportional to this angle. If the original collimated beam
is exactly bisected by the roof edge, they will be of equal intensity and this
image splitting might be tolerable, since one image would be on each detector.
However, the translation 0.5 inch in the Z direction would result in a pronounced
change in relative intensity in the two images, resulting in an unbalanced signal
indistinguishable from the X-rotation effect being measured.

If the effect of this reflector error is to be limited to 1 e, for example,
the image doubling should be limited to about 1/18 §et, since errors in the sensing
direction are multiplied by 18 when quantized to X-rotation. Angle error in the
reflector should be Timited to 1/12 x 1/18 or 1/216 §ec, a requirement which is a
full two orders of magnitude beyond the state-of-the-art.

A solution for this has been found as follows. The prism is doubled in "vertical”
size, that is, the projected width of each half of the prism is a full 2.25 inches.
The collimated beam normally falls in the center of the upper half, not straddling the
roof edge. It is then reflected to the lower half and then back to the vertical Porro,
which reflects it again to the large Porro and back to the autocolTlimator.

This effect is illustrated in Figure 6-33a, where the normal position of the
remote reflector is depicted. The center of the beam from the autocollimator is
incident at the center of the upper half of the reflector, from where it is reflected
to the lower face and then to the vertical Porro adjacent to the autocollimator. It
then retraces the same path to the autocollimator.

Figures 6-33b and 6-33c illustrate the change in path when the remote reflec-
tor is displaced vertically. A reflector displacement of + 0.5 inch produces a
displacement of + 1.0 inch of the beam reflected to the vertical Porro. Its height
must be 2.0 inches plus the collimator aperture diameter, or 3.25 inches, if no
intensity loss in the image is permissible.

Note further that the source reticle has finite dimensions, and thus the auto-
collimator beam has a divergence equal to h/f, where h is the reticie size and f
the focal length.  The beam cross section increases with increasing distance, there-
fore. Nevertheless, if the aperture stop of the system is at the autocollimator
objective, as is usually the case, there is no need to increase the size of the
reflector beyond the diameter of the autocollimator --~zrture. The outer part of the
beam will not reenter the autocollimator after refle ion no matter how large the
reflector is made. ‘

Figure 6-33d illustrates a final point about the remote reflector require-
ment. The dimensional limitations prevent the mounting of the vertical Porro below
the autocollimator as shown in 6-33a through c. However, by making the dihedral
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angle of the remote reflector 80° 28' instead of 90°, the reflected beam is made
to meet the vertical Porro.

Although Porro prisms normally have a dihedral angle of 90° so that the
reflected beam is 180° from the incident beam, the essential nature of the reflector
is the insensitivity of the reflected beam to rotation of the reflector about its
roof edge. This characteristic is preserved, even though the dihedral angle is
other than 90°.

A second problem associated with the remote reflector, although introducing
an error of much smaller magnitude, is also less easy to correct. This is the
effect of residual power in the reflector due to curvature of the reflecting
surfaces, and, if a solid prism is used, of the hypotenuse face to a lesser degree.
The effect of rotation about Y and Z axes is treated. Since the roof edge is
nominally parallel to Y, the system is, to a very close approximation, insensitive
to rotation about Y. The extremely small coupling effects of simultaneous X, Y,
and 7 rotations are treated elsewhere [16].

Rotation about the Z axis produces a "sweeping" of the reflected beam so that
the most obvious effect would be that it would no longer illuminate the vertical
Porro. If the source reticle or slit is made Targe enough so that some portion of
the beam is always captured by the vertical Porrg, this would appear to be an
adequate solution.

The dimension of the image actually formed in the focal plane of the auto-
collimator is limited, however, by the geometry illustrated in Figure 6-~33c. The
1imiting size of the image is determined by the angular subtense of the autocollima-
tor as "seen" from the vertical Porro.

If the angular spread of the beam is made large enough, therefore, so that
the + 0.5 degree Z-rotation is always accommodated as described above, the portion
of the image actually appearing in the planeof the detectors would vary in response
to Z-rotation.

If perfect straightness and uniform sensitivity of the detector edges could
be assured, this effect would be allowable. In practice, this cannot be relied
upon, and either a special configuration of the detector system must be provided,
or a second set of wedges must be provided to compensate for Z-rotation.

The latter procedure has been selected, and will operate as follows. When
Z-rotation occurs, this will be measured by the Y-Z autocollimator. By means of a
comparison circuit, a pair of wedges in the X-rotation system similar to those in
the Y-Z system will be driven by an equal amount. The result is that the beam will
always be incident on the remote Porro at the same angle and will be reflected to
the vertical Porro and back again. This is illustrated in Figure 6-34a and h.
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A long source slit is no Tonger needed, and most importantly, the image will be
held at the same position on the detectors.
The maximum image dimension which can be formed in the focal plane is given
by the expression:
L mx =d f/D
where

is the aperture diameter of the autocollimator

is the focal length of the autocollimator

o 4 O

is the total distance from the autocollimator to the
vertical Porro.

Using the fo]iowing dimensions,

d = 1.25 inches
f- = 5 inches ) 7
D = 240 inches

then L max = 0.026 inch.

However, since the intensity goes to zero at the extremes of an image of that
dimension, the s1it length will be made a little less, e.g., 0.020 inch. In the
orthogonal, sensitive direction the s1it width will be 0.005 inch.

The appearance of the image is shown in Figure 6-35, The length of the image
is 1imited by vignetting. The intensity is maximum at the center of the image and
decreases in all directions therefrom. The rate of decrease is governed by the
function which describes the common area when one circle is moved laterally over
another circle of the same size, and is surprisingly close to a linear decrease
from the center.

The reason for a narrow s1it in the sensitive direction is obvious, since
this provides a higher rate of intensity change on the detector than would be the
case if the s1it were wide enough to be subject to substantial vignetting in the
measuring direction. The calculations of signal level are based on the average
intensity along the edges of the image, which for the dimensions chosen is 0.5 times
that at the center.

The reason for matching the detector gap to the geometrical width of the slit
and its image is that this procedure provides a minimum susceptibility to electrical
null shift in the presence of differential change in responsivity of the two detectors
due to temperature change or aging.

Diffraction and/or aberration cause the image edges to be blurred beyond the
geometrical width shown, which provides assurance against a dead zone. Performance
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is optimized, however, by matching the detector gap to the geometrical or theoreti-
cal image width, allowing the blurred edges to spill over onto the detectors.

6.4.4 Dynamic Analysis

The basic blocks that define the dynamics of the wedge rotation servo system
are shown in Figure 6-36.. This model excludes the modulated carrier and demodu-
lator system which does not materially affect the dynamics.

| STEPPER
6 IN RROR F%IﬁéR L’ﬁ’ ~—s] L06IC "] STEPPER |-©

DEADBAND SAMPLER

Figure 6-36 Wedge Rotation Servo Block Diagram

The blocks shown, and their functions are:

e Low-Pass filter whose function is to reduce system noise by keeping
the bandwidth small while not distorting the error signal suffi-
ciently to cause system error; i.e., it must be chosen to maximize
the system S/N.

s Deadband. This block is necessary to prevent the system from
"hunting". Its magnitude must exceed one step (+ one-half step)
of stepper motion. System noise and overshoot will determine its
minimum value.

e Stepper logic. This block puts out a forward direction signal
whenever its input is positive indicating that the "error" is
positive and a reverse direction signal for a negative input.

e Stepper. This block contains the non-linear stepper dynamics.

The system is sized based upon the maximum specified rate of the remote reference
which has been defined as 0.56°/sec (200 se¢/sec), and the wedge design which
produces an optical reduction of 120:1. The weight of each step is selected to
represent 0.5 sec and thus contribute negligibly to errors. In order to achieve

200 sec/sec, a stepper rate of 400 steps/sec is required. In addition, due to the
optical reduction, each step produces a wedge rotation of 1 min. Finally, with each
step of the stepper motor itself selected as 45 degrees, a total gear reduction of
2700 is required. Performance analysis was performed using digital simulation, with
results to a sinusoidial input shown in Figure 6-37, assuming a system deadband of
+ 1 step. Damping is enhanced by a method of shorting the quadrature coil (0°) just
after energizing the 45° coil. |

Although performance is important, it is recalled that system error is not
a function of the indicated servo error. An analog error signal is also provided
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directly from the preamp-postamp stage, and the measured angle is determined by the
algebraic sum of the servo-resolver output and the "raw" or residual error signal.
A considerably larger deadband than the one step indicated would be tolerable.

6.4.5 Error Anaiysis

The assembly error budget is summarized in Table 6-8. In many cases, it
is necessary to establish the maximum error that could result from certain events
or defects, and then to decide how these should be treated statistically in order
to derive a fair estimate of error.

With a normal distribution of probabilities, it is customary to divide the
~maximum by three to obtain the standard deviation. For deviations which are uni-
formly distributed between maximum and minimum values, however, the standard
deviation is derived by dividing the extremes by ./ 3. Information is not available
to indicate whether the angular deviations and transverse displacements -are normally
or uniformly distributed. Even if upiformly distributed., however, several of the
error contributions are dependent on simultaneous occurrence of two or more events,
in which case the maxima should be divided by numbers even greater than three.

The maximum error contribution comes from the residual curvature of two
reflecting surfaces of the Porro prism. The maximum error due to this defect,
when coupled with maximum translation parallel to Z, is 6 sec. But this is arrived
at by a combination of three events. If uniformly distributed, the maximum value
should be divided by 3.17; if normally distributed, by about five. Similarly
with certain cross-coupling errors. Therefore, the approach which has been adopted
is to divide all maxima by three, which is felt to be on the conservative side.

The development of the various contributions to the error budget s summarized
in the following sections.

6.4.5.1 Noise Equivalent Angle, Transverse Rotation

Assuming an output of 2.0 MW from the gallium arsenide source and a Lambertian

radiating diameter of 0,38 cm, the radiance N is calculated to be 0.56 w/cm2 ster.
Transmittance T of the entire system is given by the following:

30

T =0.075 x 0.9957" x 0.98 = 0.063

where  0.075 is the resultant efficiency of three beam-
splitter encounters,

0.995 is the transmittance of each airglass surface

0.98 is the reflectance of the mirror.
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Table 6-8 ASA Error Budget Summary

Source Y-Z system (1) X system (1)
Noise equivalent angle <0.01 §ec ~ 0.03 sec
Detector null shift 0.01 : 0.08
Thermal bending 0.01 0.23
Analog signal error 0.08 0.08
Orthogonality .17
Alignment to X, Y, Z 0.10 0.07
Alignment of Z follower 0.33
Resolver A]ignment to wedges 0.10 0.10
Resolver Linearity 0.04 0.04
Cfoss-coup]ing 0.10 0. 80
Mirror error 0.10 |
Prism error-large 2.0

-small 0.5

TOTAL (RSS) 0.28 sec 2.25 sec
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Then irradiance Hma at the center of the image is given by

X
= 2,452
Hmax N T d7/4f
= 1.76 x 1073 w/cm2
where d = diameter of collimator aperture = 3.2 cm
f = focal Tength of collimator = 12.7 cm

The average intensity along the edge of the image is reduced below that at
the center by the factor V (for vignetting). For a square image 0.013 cm on each
side, with the aperture, focal length and distance indicated, V = 0,77, Then,

2

- -3
Have =1.35 x 1077 w/cm

The image area dA falling on the detector due to a 1 set deviation is given~
by dA = h dw, where

h = height of image in insensitive
direction = 0.013 cm

dw = image width moved

= 2f x 4.8x10°°<1.23x 10 em
Then, dA = 1.56 x To'acm2 and power on detector, P, is given by
p=21x10"7y

Signal E = 2100 microvolts P-P, where R = responsivity = 106 v/w,

Noise includes detector noise and that of the FET input.

Detector NEP A AF/D* = 3.6 x 1072w

where: A = 0.01 cm® (two detectors)
f = 320 Hz
D* = 5 x 101] at 0.9 micrometers

Noise signal = R x NEP = 3.6 microvolts

0.18 microvolts

0.04

These are both negligible when compared with
detector noise.

FET voltage noise

FET current noise
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Then, RSS noise = 3.6 microvolts rms

18 microvalts P-P

i

Then S/N = 2100/18 = 117

and NEA

N/S = 0.009 set

6.4.5.2 Noise Equiva]ent Angle, Twist Rotation

N =0.56 w/cm2 ster
T = 0.155 x 0.995°° x 0.98%
= 0.118
Then H__ = 3.3 x 1072 w/en?
For a s1it 0.051 x 0.013 cm, V = 0.50
Then Hye = 1.65 x 107%w/enf
h = 0.051 cm
dw = 4f x sines x 4.8 x 10°°
or dA = 3.5 x 1077 cm?
Then P = 1,65 x 3.5 x 1070

5.8 x 107 O

580 microvolts

m
1]

Noise signal = 3.6 microvolts rms

18 microvolts P-P

Then S/N

580.18 = 32

1]

and NEA 0.03 sec
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6,4.5,3 Detector Null Shift

The detectors are separated by a distance equal to the geometrical image
size, so that at null the only energy on each detector is that due to diffraction
and/or aberration. Although the two detectors (silicon) are made of the same
material, it must be presumed that their responsivities will be slightly different.

At a given temperature the image will yield a null signal when it is shifted
so as to fall slightly more on the detector of lower responsivity. At a different
temperature, although both detectors may be presumed to have an equal temperature
coefficient of responsivity, a small null shift will result. This shift can-be
" shown to be equal to

Sn X8 X r x AT

S 248 +2r AT _ o . e e
where R = Nominal responsivity

8 = Fractional difference in responsivity

r = Temp. coefficient of responsivity

T = Temperature change

Sn = Angular subtense of image on each detectar at null

For detectors of the type to be used

& will be not over 5 per cent
r is approximately .004/°C
T will be taken as 15°C

Sn = 10 gec

Then AS 0.011 sec in Y or Z

H

0.25 sec in X

Thus, even over the full temperature change, this effect is small in comparison to
the error tolerance.
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6.4.5.4 Analog Signal Ervor

The servo analysis indicates residual Tags of slightTy more than two steps,
or 1.2 sec, when the deadband is set at two steps (+1). However, it may be found
‘desirable to increase the deadband for one of several possible reasons. This can
readily be done since the analog error signal is always available as a separate

output,

Assuming a possible maximum servo lag of 5 set, the error in the analog out-
put for the same value must be estimated. The system has been designed such that the
analog signal can be calibrated on command by disabling the servo and causing the
stepper to take a convenient number of steps such as ten, corresponding to an average
value of 5 sec. The resulting error signal change then provides an in-flight
calibration of the analog output.

The rés1dua1 error is then due to changes in output since the last calibration.
A high estimate is a five percent residual error in scale factor ca11brat1on, which
at 5 sec lag produces 0.25 séc maximum error.

6.4.5.5 Orthogonality

Non-orthogonality of the scanning directions of the wedges in the dual-axis
autocollimator by 1 min can produce an efror of 0.5 sec. A fine adjustment is
provided in the design whereby one wedge assembly can be rotated relative to the
other by motions as small as 1 min. At assembly, with autocollimator operative and
directed at a mirror, one pair will be exercised through its full range while the
output of the orthogonal channe1 is monitored. Adjustment of the wedge assembly will
be made until the coupling error of the second channel is reduced to 0.5 sec or less.

6.4.5.6 Alignment
Alignment to X, Y, and Z axes

The procedures for aligning the elements to the defined axes have been
developed in detail, with the achievabie accuracy in Y and Z of 0.30 sec, and in X
of 0.20 sec. ' :

Alignment of Z-follower in X rotation channel

The requirement and procedure for this step are similar to those used to
achieve orthogonality in the Y-Z system. However, since other error contributions
are larger, the effort to reduce this value to 0.5 sec is not justified, and 1.0 sec
will be the maximum allowed.
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6.4.5.7 Resolver

Resolver Linearity

The Tinearity specification of the 16-speed output of the resolver is +15 sec
over the +60° excursion, with a design goal of 10 sec. Taking the 15 sec 1imit and
dividing by the angular magnification of the wedges, 120, we find that the maximum
residual system error due to this cause is 0.13 sec.

Resolver Alignment to Wedges

The necessity for aligning the resolver zero to the zero-deviation position of
the wedges results in an achievable maximum residual ervor of 0.30 set due to this
cause, '

6.4.5.8 Reflector Errors

Mirrer Error. e mme e e m — s e T T

The tracking action of the autocollimator in the Y-7 subsystem causes the beam
to move across the face of the mirror. In addition, translation causes different
areas of the mirror to be used. Residual curvature of the mirror can then cause
errors in the direction of the reflected beam. For a reasonably tight specification
of 0.05 wavelength maximum departure from flatness, the effect is found to be 0.30 sec
maximum error.

Prism Errors (X-rotation Subsystem)

Residual curvature of the reflecting surfaces on the large Porro prism,
coupled with allowable "vertical" translation (parallel to Z) produces a shift in
the direction of the reflected beam of 0.33 sec. However, when this is quantized in
terms of X-rotation, the necessary multiplication by 18 produces a maximum error of
6.0 sec. This is by far the largest error contribution, and therefore deserves
considerable attention.

Assuming a flatness specification of 0.025 wavelength, which is the severest
practicable tolerance, the cumulative effect of three surfaces (hypotenuse and two
reflecting surfaces) and the fact that the beam traverses this prism twice produces
potential system evrors of more than 10 sec.

By specifying that the hypotenuse be hand-figured by the optician to achieve
an overall uniformity of reflected wavefront of 0.125 wavelength, a residual system
error of 8.4 sec was calculated. In addition to this is the praoblem of inhomageneity
in the glass of which the prism is made. The total path length (two passes) is
9 inches, and with even the best available grade of homogeneous fused silica, addi-
tional angle errors would be experienced.
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Consideration has been given to the use of two first-surface reflectors to
form an air prism. The problem to be solved with this approach is to make a
supporting frame to hold the reflectors in a very stable angular relationship to
each other, particularly in the presence of temperature changes. This problem has.
been solved satisfactorily, and the advantages of a mirror assembly can be realized.
These include the fact that the effect of curvature of the reflecting surfaces in
a solid prism is increased by a factor equal to index of refraction of the glass,
or about 1.5. Also, there is no hypotenuse face to add its own curvature effects.
Finally, the problem of homogeneity of the glass is no Tonger relevant. By this
means , the residual system error can be reduced to 6.0 set maximum in the presence
of a full 0.125 wavelength curvature on each reflector and a maximum Z translation
of 0.5 inch.

The sectional view through the reflectors is shown in the sketch in Figure 6-38.

Figure 6-38  Sectional View Through Reflector
Each reflector is cut from one piece of fused silica {commercial grade). In addition
to the reflecting faces, however, surfaces D and D1 are also polished flat to a small
fraction of a wavelength and then optically contacted. This is somewhat similar to
the practice of wringing gage blocks, and produces a cohesion which is not dependent
on air pressure. The bonding strength approaches that of the bulk material, and
separation is extremely difficult.

In addition, the two reflectors will be gripped by a frame across surfaces
C and E by means of which the assembly will be mounted. A protective frame will
also surround the other sides, but kinematic design will be employed to avoid
stressing the assembly, and the forces between D and D1 will be suppTemented by
the mechanical design.

The small Porro prism will be similarly designed, and its residual system
error is one-fourth that of the large reflector.
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6.5 REFERENCE BLOCK ASSEMBLY

The function of the RBA is to provide structural mounting surfaces for the
Star Tracker Assembly (STA), Gyro Reference Assembly (GRA}, and Alignment Sensor
Assemblies (ASA). The principal requirement is to maintain a stable geometrical
relationship between each of the assemblies, limiting angular changes to 0.5 set.
The following functions are associated with the above requirement:
® The RBA must be capable of withstanding the launch vibration

and shock environments while maintaining levels seen at each
of the assemblies within compatible limits.

e The temperature gradients within the RBA must be low, to minimize
thermal deformation stresses, and stable, to Timit cyclic thermal
deformations to acceptable levels.

Although it would be desirable to formulate an RBA design which is flexible or . -—

modular to the extent of being capable of accommodating any of the configurations
while maintaining optimum weight and performance, the design of spacecraft type
structures is incompatible with this type approach. In addition, the design of

any particular RBA configuration is intimately tied to the basic spacecraft design.
For these reasons, a single, non-madular design, which incerporates the maximum
number of assemblies mounted in an 8.0 foot diameter spacecraft was investigated.

The extent of the design conception and investigation was limited to establishing
the feasibility of meeting performance requirements with a given geometry, structural
concept and thermal control system.

Figure 6-39 1is a layout drawing of the RBA configuration investigated. The
overall shape is that of an equilatreal triangle, 10.0 inches deep, with tapered
legs tying to the spacecraft supports located at each vertex. The structure is
made of 6061 aluminum with caps on each face and webs which form a very stiff,
highly conductive unit capable of distributing heat loads to minimize thermal
gradients. The selection of three-point mounting was made to minimize bending
loads in the principal, most flexible RBA plane. Because the spacecraft thermal
control system and structure will undoubtedly allow motion of the RBA supports in
all three axes to occur, loads will be imposed on the RBA. With three-point
support, bending loads in the principal RBA plane will be limited to those
generated by torques, which can be kept low through proper design of the supports.
Bending loads in the other two planes are less critical since the RBA stiffness
is much highér in these planes and distortion is only of interest to the extent
that it couples into the principal plane. The star trackers are overhung from
one leg of the triangle to minimize the size of the viewing window required in the
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spacecraft. The modular elements of the GRA are mounted at the geometrical center
of the triangle and each ASA is mounted on the opposite side of the RBA arranged
hexagonally in line with each of the experiment booms.

6.5.1 Structural Design

The following considerations are pertinent to the structural design of the
RBA:

e The unit must have the strength to withstand the launch vibration
and shock levels.

e The launch loads imposed on the RBA and its transmissibility
must be compatible with the load limits for each of the
mounted assemblies.

» Thermal gradients and resultant deformation must be limited
~ so that short term .changes-are maintained -below-0.5-sec— -
between any two assemblies.

s Material selection and fabrication processes must be
directed towards producing a finished product with low
residual stresses since these, over a period of time, will
produce analastic and plastic deformations whose magnitude
may be difficult ot predict.

The nature of the RBA concept necessitates that either the assemblies them-
selves be designed to withstand relatively high launch loads, or that vibration
isolation be accomplished at the RBA mounts. Isolation cannot be implemented at
the RBA-assembly interface. The preliminary design shown in Figure 6-39 is intended
to be an extremely stiff structure with natural frequencies sufficiently removed
from booster and spacecraft resonances to achieve good isolation. It is expected
that the design will be either conductivity or stiffness 1imited rather than
strength limited. It can be shown that with 10.0 g's at each assembly, the maxi-
mum bending stress will be less than 500 psi.

6.5.2 Thermal Design

The chosen thermal control system for the reference block assembly may be
generally categorized as a heat pipe design. The design consists of the following
components {and/or requirements):

e An insulation blanket over the entire RBA to isolate the

assembly from the spacecraft environment (particularly from
temperature differences across the spacecraft)

e A highly conductive material, such as aluminum or beryllium,

for the Reference Block Assembly structure, to avoid local
temperature perturbations
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. e Insulation standoffs {approximately 0.100-inch fiberglass) to
thermally isolate heat sources, such as gyro units, from the
RBA.

& Aluminum base plates under each electronic box to thermal
‘ couple the box to the evaporator end of the heat pipe

® Heat pipes to carry the heat from the various heat sources to
an external radiator

o A radiator outside the insulated assembly to distribute the
heat dissipated by the electronic assemblies on the RBA.

The principle of the heat pipe design is il1lustrated in Figure 6-40. The
gyro units and the alignment sensor units represent major heat sources, which would
cause unacceptable temperature disturbances if these units were coupled to the RBA.
However, this design approach isolates these boxes from the RBA with insulation
standoffs. Since the entire RBA and attached boxes are insulated, the power
dissipation within this insulation cocoon would cause excessively high temperatures
unless the heat is removed. The heat pipes are used for that purpose; heat dissipa-
tion of each assembly is absorbed by the "evaporator" section of the heat pipe, and
is carried away to the external radiator (which is the "condenser" end of the heat
pipe). Thus, the net heat dissipation from an electronic package to the RBA is
essentially zero.

0n1y about 1 per cent of the power dissipation is absorbed by the RBA via the
insulation standoffs. Conservative temperature gradient calculations show that
the RBA will sustain grad1ents less than 0.5°F if the structure is 0.10 to 0.25-7nch
thick where the heat d1ss1pat1ng units are located.

The radiator size depends on whether it is mounted inside or outside the
spacecraft. If there is some zone on the outside surface that has negligible sotar
or earth heating, the radiator can be mounted externally and its area will be approx-
imately 6.5 ftz. If the radiator cannot be mounted outside, a rather large fin
{about 20 ft? of the surface area) will be needed to distribute the heat to the
spacecraft interior. '

Several different schemes were evaluated fqrfmeeting the requirements of
negligible thermal deformation of the RBA, including'

e Using a material with a very low coefficient of expansion,
such as Invar, Cer-vit or graphite-composite

e Using thermal control devices to achieve very small tem-
- perature gradients,

In consider1ng thermal control methods, three.systems were evaluated: a
fluid loop system, a heat pipe system with the RBA uninsulated, and that se1ected
using a heat pipe system with the RBA insulated.
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The easiest solution, from a thermal viewpoint, would be to construct the
RBA from a material with a very low coefficient of thermal expansion (o). Then
‘ temperature differences up to 5°F could be tolerated. Some materials in this
‘class are Invar steel, Cer-vit (ceramics) and graphite-composites. The graphite-
composites are of interest because of their low weight to strength characteristics;
however, this class of materials is relatively new and there is a Tack of data
concerning its long-time dimension stability. Ceramics were discarded because of
their poor mechanical propertigs {brittleness). Invar is not attractive because
of its high density (500 1b/ft ) and its lack of good dimensional stability.

A fluid loop system was considered but found impractical for two reasons: the
life or mean-time-to-fatlure of pumps is too short for this application without
extensive redundancy, and the system is complex and would require of the grder of
25 watts of electrical bower to drive the pumps.

Another scheme uses heat pipes to distribute heat from local sources uniformly
over the whole RBA. In theory, the method appears to be a logical way to solve the
problem; in practice, however, the scheme has subtle deficiencies which make it
impractical for the very small thermal gradients that are required. The probiem is
not in the heat pipe, per se, but in transferring heat to and from the pipe.
Temperature differences in the RBA up to 5°F may result even though the heat pipe
vapor is completely isothermal. And, these gradients will vary (time-wise) due to
changing side-to-side temperature gradients inside the spacecraft.

The principle of the selected approach is to isclate the RBA from all heat
sources (both electronic equipment and the spacecraft}, and to transfer electronics
heat dissipation via heat pipes to an external radiator. Thus, in the absence of
heat sources, the RBA will not be subjected to temperature gradients. Insulation
blankets isclate the RBA from the potentially non-uniform spacecraft environment,
and insulation standoffs are used to isolate each electronic assembly. The assemblies
are in good thermal contact with the evaporator (warm) end of the heat pipe via the
aluminum base plate, so nearly all the heat dissipation is transferred directly
to the heat pipe. The distribution of heat from a typical electronics box was
considered, from which it was noted that over 95 per cent of the heat dissipation
is carried away from the RBA by the heat pipe, and only & minimal amount is
absorbed by the RBA.

The heat pipes carry the electrical power dissipation to a radiator, which
is a simple flat plate acting as a radiation fin. The radiator temperature can vary
(1ike +15°F) without affecting the temperature distribution of the RBA. However,
temperature variations of the radiator will be reflected by similar temperature
variations in the electronic boxes that are toup1ed to the radiator via heat pipes.
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For that reason, the radiator can be mounted on an external surface if there is
negligible solar or earth heating. A criterion would be that the absorbed energy

be less than 15 Btu/ft -hré This results in an externally mounted radiator which
would require about 5.5 ft of surface area. If the orbit characteristics or space-
craft configuration do not permit an external Tocation, then the radiator can be
mounted internally with some penalty in surface area as noted earlier.

A ”gas-contr611ed" heat pipe can compensate for some changes in the
radiator's enviranment. This second-generation heat pipe can effectively
change the length of the radiator by using a non-condensable gas in con-
Junction with the normal working fluid. TRW recently fabricated a gas-controlled
heat pipe for 0AQ, and has also designed and built a gas-controlled heat pipe
to control the temperature of a Lunar Surface Magnetometer to be carried by
Apollo.

of the design concept: the first step was to determine if the boxes could be both
well coupled to a heat pipe and well isolated from the RBA; the second step was
to determine thermal gfadients in the RBA due to residual heat leaks through the
insulation standoffs; and the third step was to size a radiator for the total
power dissipation load. This type of approach was used to verify the principle

of the approach.

In general, this scheme makes the RBA/spacecraft thermal interfaces very
simple. Since the RBA is isolated by insulation blankets from the spacecraft
interior, the RBA is not sensitive to side to side gradients, top to bottom gradients,
local hot or cold spots, or aother Teacal perturbations. The main consideration is
providing a constant environment to the radiator. The stability of the environment
does not affect the RBA, but it does affect the temperature level of the electronic
boxes. Thus, if the boxes can vary + 15°F about a mean temperature level, then the
radiator temperature level can be allowed to vary by +15°F due to its surrounding
environments. If the radiator is located internally, the electronic boxes will
be approximately 40°F warmer than the spacecraft average temperature level. The
RBA, however, will operate near the mean temperature of the spacecraft since its
thermal coupling to the spacecraft is better than its coupling to the electronic
boxes.,

Consider a case of the worst thermal gradient across the total RBA being
assumed between the Targest separation of critical assemblies, i.e., between the
STA and the most remote ASA. Because the RBA is completely wrapped in an insulation
blanket and will be provided with thermal isclators at the mounting points, it is
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well insulated from the spacecreft. Indications are that the transient, or once-
per-orbit, changes in gradients will be Tess than 10 per cent of the steady-state
gradients, Therefore,

etrans < 0,15 sec
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6.6  EXPERIMENT GIMBAL AND ELECTRONICS

The Experiment Gimbal Assembly (EGA) configuration discussed is suitable for
baseline requirements for earth and space pointing. Modifications necessary to
accommodate alternate payloads will be identified later. Figure 6-41 is a sche-
matic of the earth peinting EGA configuration. The payload is divided into two
parts and mounted at the ends of the Y-axis shaft. Dividing the load into two
parts is necessary to achieve low mass unbalance forces. The alternative to
this division is desighing a gimbal to surround the payload which, of course,
would be much heavier. The X and Y axes are capable of full 360° rotation which
makes this configuration suitable for use in space pointing. The space pointing
configuration would be modified to delete the Z axis, which both simplifies and
lightens the unit. This configuration was arrived at through studies which con-
sidered a number of alternates. In all cases, the selected configuration is both
lighter and has a greater potential angular excursion which makes it suitable,
with simplifying modifications, for the space-pointing configuration.

Each gimbal axis is supported by angular contact ball bearings which are
axially preloaded. The outer races of the bearings are attached to the housing by
means of flexures which allow the position of the center of rotation and the axial
load to be adjusted. The flexures are relatively flexible so that when a given
axial or radial bearing load is reached, sufficient deflection occurs to allow
preloaded stops to contact, thereby 1imiting the Toads which the bearings must
transmit. The prelcaded stops also cause the natural frequency of the shaft and
its associated mass to change once contact occurs. Thus, magnification ratios are
reduced without depending upon friction damping. The contacting stops are 45° to
the axis of rotation which causes them to act in both the radial and axial
directions. In order to allow radial shaft motion greater than .005 inches, which
is a typical value for the torque motor air gap, stops are provided on the motor
to prevent rotor and stator contact and the stator is mounted on three spring
preloaded shoes which permit radial motion. The typical gap setting for the
inductosyn is also .005 inches.
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Figure 6-41. Experiment Gimbal Configuration
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Greater axial shaft motion is permitted by providing stops which prevent the
plates from contracting and mounting the stator on flexures which permit axial,
but not radial motion.

In the interests of minimizing friction and rotational spring constants,
wire routing between the housing and shafts is accomplished by means of flat cable
wraps similar to those used on the star tracker gimbals. Tests on similar units
have shown that both friction and spring constants are reduced to negligible
levels.

In order to achieve a runout accuracy of 0.5 se¢, the inner races of the
bearings are pressed onto the shaft prior to grinding the grooves. In this way
the grooﬁes for both bearings on the shaft can be ground in a single setup, thus
minimizing runout and achieving maximum parallelness between the inner race
grooves. In order to implement this feature, the gimbal ring must be split
to allow assembly of the Z-axis shaft. This joint, as well as all others in the
unit, must be designed to permit a minimum amount of motion during taunch vibration.

In order to be able to servo the EGA on the ground with the payload installed,
the bearing Tpads must be relieved to reduce friction. If the full payload were
supported by the bearings, the running bearing friction per axis would be between
30.0 and 60.0 oz - in, depending upon the axis. This is far in excess of the
servo system capability. Therefore, two hydrostatic gas bearings are provided for
each axis to relieve bearing loads on the ground. By means of a special test
fixture, one axis at a time can be supported by the gas bearings thus Tifting the
shaft off the preloaded stops, relieving all radial bearing load and reducing
friction torque to that generated by the axial preload and the gas bearings. Using
this technigque, 1t is estimated that friction torque can be reduced to 5.0 oz - in.
A1l rotating air bearing pads, with the exception of the inboard pad on the X-axis,
can be designed for removal prior to launch. Consideration can be given to aligning
the axis under test vertically to minimize shaft deflections and approach the zero
gravity configuration more closely. This technique requires the use of a high
capacity thrust bearing. Bearing lubrication will be provided by means of oil im-
pregnated in nylasint reservoirs. Excape of the ¢il is limited by means of laby-
rinth seals. These supply and containment techniques have been proven on a number
of TRW space qualified electromechanical devices.
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The torque motors chosen are DC brushless, full rotation types. Note that
two motors are used on both the Y and Z axes to produce symmetrical thermal
gradients at the gimbal ring and the Y and Z axes. A single motor is used on the
X-axis located close to the boom attach flange for thermal isclation. Axial
thermal symmetry will not be important on the X-axis. The prime concern will be
establishing uniform temperature at each cross section to minimize bending distor-
tions.

The only reasonable alternative to ball bearings, for this application, are
large angle rotational flexure pivots. However, no flexure designs for this amount
of angular excursion are known to exist. The use of single ball pivots similar
to those used on the Star Tracker Assembly gimbal is impractical because of high
friction for the payloads considered.

Because of the large payload, significant shaft strength is required for '
support on the ground. With the bearing size on the layout, approximately 300,000
psi is generated in bending. Information obtained from bearing manufacturers
indicates that with the basic EGA design, 0.5 set¢ repeatable and 0.5 gec non-
repeatable runouts are obtainable within the state-of-the-art.

Because of the size of the payload and boom, it is appropriate to investigate
the launch vibration in some detail and set up special requirements for the EGA.
The following is a summary of the manner in which the vibration requirements were
established:

e It is assumed that the payload will be latched to the space-
craft during launch so that the majority of the payload launch
load is taken through the spacecraft structure rather than
through the precision EGA. The fundamental frequency of the
experiment package - latch support must be greater than 25.0 Hz
in all directions.

o It is assumed that the booster vehicle is a Titan IIIC pro-
ducing maximum axial vibration loads of 10.0 g's and Tateral
loads of 4.0 g's. The primary excitation frequency of the
booster is approximately 21.0 Hz. Higher frequency inputs are
roughly equivalent to the random cycles specified for Titan-
launched equipment to account for aerodynamic induced vibration.
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A preliminary linearized X-axis dynamic analysis using the TRW STRU-PAK
TM Program was performed to determine loads on the primary EGA membe rs
A four degree of freedom model was used as

and relative deflections.
. shown in Figure 6-42.

The maximum displacements

fnl

fnz

fna

fou

below:
X
Half Ampl.
Coordinate  {Inches)
B .0023
p L0137
3 L0137
4 0110

= 123.8 cps

H

It

896.9 cps

5608. cps

226.0 cps

The four natural frequencies are:

occur at the first natural frequency as tabulated

X/386

(g's

3.6
21.5
21.5
17.3

Phase
Angle

{Degrees)
7.00
89,09
89.11
-87.44

The maximum displacement occurs at the Z-axis radial flexures which com-
press by 0.0247 inches.

course, substantially reduce this deflection.

Including the effect of the preloaded stops could, of

The relatively lTow loads and high natural frequencies shown above are encourag-

ing since they indicate that the flexure stiffnesses may be substantially increased,

the resultant displacements reduced,and the preloaded stops eliminated. The stiff-

nesses of the flexures would then be dictated by the force-position characteristics

of the air bearing support fixture which, along with the flexure stiffness, will

determine the degree of accuracy with which the flexures can be unloaded. In re-

designing the flexures, every effort will be made to use a design which is contin- .

uous about the diameter as opposed to the three-member approach shown both to mini-

mize distortion of the outer bearing race and produce uniform temperatures about

the bearing diameter.
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A schematic representation of the thermal control scheme is shown in
Figure 6-43. All areas of the EGA, with the exception of narrow bands on the
housing, are insulated with 20 layers of 0.25 mil aluminized Mylar sheet which
forms a 1/4 inch layer. The exposed bands are radiating areas which reject excess
heat. Heaters are bonded to the bands and controlled by means of thermistor sensors
located in strategic areas. The Y and Z axis bands are painted white; the X axis,
which is more significant thermally because of non-symmetry, is covered with secon-
dary surface mirrors to minimize radiant heat input and resultant distortions.
Critical sections will be controiled to a nominal temperature of 70°F. Heater
power required to maintain this control will be highly dependent upon the orbit.
A maximum of 72.0 watts is estimated for the worst case condition.

The experiment gimbal electronics is very similar to the Sensor Electronics,
which supports the star tracker. The inductosyn encoding function is implemented

in identical circuits. The motor electronics have an additional stage of power
amplification to drive the larger motor.
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6.7 ANTENNA GIMBAL AND ELECTRONICS

The antenna gimbal is a two axis drive assembly which is controlled to point
the antenna. An Az-El configuration was considered initially, but this leads to the
requirement for high gimbal rates when tracking an overhead target from a limit
cycling spacecraft. Figure 6-44 shows the configuration selected where the inner
gimbal (attaches to antenna) has an angular range of *90 degrees and the outer
gimbal (attaches to mast on spacecraft roof) has a range of +110 degrees. The
gimbal consists of two identical assemblies stacked as shown with the axes perpen-
dicular, but non-intersecting. The outer gimbal axis is parallel to the spacecraft
pitch axis and the inner axis is parallel to roll. In the stowed condition, the
inner gimbal is constrained from rotating by an electro-explosive pin puller at the
drive periphery and the outer gimbal is pinned to the spacecraft mast.

6.7.1 Drive Unit Design

Each drive unit contains a stepper motor with integrally attached gearhead,
a harmonic drive, dual speed resolver, and supporting bearings. The drive unit
is designed to retarget the antenna over 180° in less than four minutes. A step
resolution of 0.005 degree is desired to meet pointing accuracy requirements. This
leads to a stepping rate of 160 steps per second for a 90° stepper and an overall
gear ratio of 18,000. This ratio is made up of a 120:1 harmonic drive and &
150:1 gearhead. For the size 8 Kearfott motor selected, running torque is about
0.25 in-oz which, reflected through the gearhead, requires a torque capability
of 37.5 in-0z. A size 15 integrally attached gearhead is selected.
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Figure 6-44a. Antenna Gimbal Assembly Layout (Unit)
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The output motion of the gearhead is reduced further by another stage of gear
reduction. The harmonic drive was selected to obtain high reduction ratio and
high torque capacity in a small package and to obtain low backlash. The harmonic
drive, depicted in Figure 6-45, consists of three elements; the circular spline,
the flexspline, and the wave generator. The circular spline is a rigid internal
toothed ring. This meshes with the flexspline, a thin flexible ring of slightly
smaller diameter with external teeth. The wave generator consist of a ball bearing
with thin races which have been deflected into an elliptical shape by the elliptoidal
hub upon which the bearing is mounted. When the hub and inner race are rotated, the
shape of the outer ring rotates at the same speed. In the basic harmonic drive
configuration as a speed reducer, the wave generator is the input element. As the
wave generator rotates, it imparts the ellipse-like shape to the non-rigid flex-
spline. The shape of the flexspline, but not the flexspline itself, rotates at the
input speed of the wave generator. This action forces thg_ﬁ]gx§pljpgjteeth into
engagement with the circular spline teeth. Since the flexspline has two less
teeth than the circular spline, a relative motion results between the two members
as the wave generator advances the position of teeth engagements. Either member,
the flexspline or the circular spline, can be held stationary and the other becomes
the output member.

Circular — Wave
Spline Generator
(Rigid} {Input}

Flexspline
[Output}

Figure 6-45 Harmonic Drive Configuration

In the AGA the flexspline is fixed and, therefore, the circular spline is the
output. A special harmonic drive was configured for this application for packaging
of the stepper motor/gearhead within the flexspline shell. The output shaft of the
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gearhead is coupled to the wave generator through an oldham coupling which is inte-
gral with the wave generator. The coupling eliminates critical alignment require-
ments between the two stages.

To provide high accuracy readout signal, a dual speed resolver is direct
mounted on each axis. The sine and cosine outputs of the resolver are applied to
an electronic encoding system which converts the resolver signals to digital
angular information. The dual speed resolver consists of 32-speed sine and cosine
windings for high accuracy information and single speed sine and cosine windings to
resolve the position ambiguity of the multi-speed output.

During launch the antenna/communication platform will be constrained or
snubbed to avoid backdriving the AGA. However, this snubbing will not necessarily
relieve the launch loads on the AGA bearings. Therefore, ball bearings of the
"torque tube variety were selected to meet the anticipated high Toading and also for
packaging convenience. A pair of angular contact duplex bearings and a radial
bearing are used in each axis. The duplex pair is fixed to one end of the assembly,
and the radial bearing is fixed to the housing at the other end but allowed to
float on the shaft to accommodate thermal expansion.

Low vapor pressure fluid lubricant is applied in a thin fiIm on all bearings
and gear surfaces, and on the inner walls of the assembly. Sintered nylon reser-
voirs {(Nylasint) impregnated with the fluid are placed near the bearings and gears.
The phenolic retainers in the bearings are also ihpregnated with oil to act as
reservaoirs. 0171 outgassed from the reservoirs reaches equilibrium with the ¢il
coated surfaces or replaces the oil which is lost by effusion through the resolver
gaps. Further replenishment of the lubricant is furnished by surface mobility :
of the fiuid.

6.7.2 Electronics Design

The Motor Control Unit provides sequénced drive power to the actuator stepper
motor on command. Mode switching is provided to enable ejther command or autotrack
inputs for closed loop control of the gimbal actuator.

Figure 6-4 6 shows a schematic of the split two-phase stepper motor. Each
phase consists of two coils in series with a command power connection. To accomplish
rotation in one direction, the coils would be energized in the sequence shown,
.Rotation in the opposite direction occurs by reversing the sequence, i.e., trans-
posing (2) and (4). A mechanical step occurs at each transition with four steps
constituting & complete electrical cycle.
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Figure 6-47a shows one channel of the Motor Control Unit. Input command
signals are conditioned such that error magnitude and sign are converted to sense
and step data for the gray code counter. Power is enabled to the coil driver on
demand from the conditianing logic to minimize power consumption. The gray counter
outputs provide the sequencing consistent with the step motor requirements. Mode
switching logic is provided to accept autotrack inputs.

The Position Encoding Unit digitizes the outputs of a 32-speed wire wound
resolver to provide 16 bit data representing the antenna gimbal angle over a range
of + 110 degrees. Figure 6-47bis a block diagram of the position encoding electronics
which employs the "double angle" technique for generating highly accurate resolver
to digital information. The sinusoidal excitation for the multispeed resalver is
derived by dividing the output of a 1.024 MHZ crystal controlled oscillator
by 1024 to obtain a 1000 Hz square wave. This is filtered to recover the
fundamental and then power amplified for application to the resolver rotor. The
resolver stator outputs, which are amplitude modulated as a function of shaft angle,
are characterized by (E sin & sin wt, E cos 8 sin ot, E'sin 32 o sin wt, E cos
32 asin wt).

The multi-speed outputs are buffered and converted to phase modulated outputs
by means of precision phase shifting circuitry. After summation, the outputs are
E' sin (wt - 328). The phase relation of the two outputs is compared by detecting
the zero crossings of the sinusoids. The detected outputs then gate 1.024 MHZ
clock pulses into a 10 bit fine interval counter to obtain a count proportional to
32 times the resolver shaft angle. The "double angle" scheme results in fine counter
contents that repeat every 5.625 degrees of resolver shaft rotation and each pulse
contained therein is equivalent to .00549 degree of shaft rotation.

In order to provide non-ambiguous shaft angle data over the required dynamic
range, the single speed resolver windings are digitized in a similar manner. The
output E sin asin wt is shifted in time phase by 90 degrees and summed with E cos 8ut
to provide an output of E' sin (mt + 8). This output is zero detected and the phase
diffefence between it and the reference is measured by integral counting. The count
accumulated in the coarse interval counter provides 8 bits of angle data. After
the coarse counter is corrected, the six most significant bits are transferred
as angle data.

In the output resolver output equations presented above, the phase shift of
25 + 8 degrees from rotor to stator was neglected. Since the + 8 degree variation
is a function of temperature, the excitation voltage is unsuitable as a reference
voltage used to compute phase angle. To obtain a suitable reference, the single
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Figure 6-47a.
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speed (E sin 6 sin wt, E cos & sin wt) is squared and summed, yielding a sinusoid
at twice the excitation frequency. The zero crossings of this voltage are detected,
then divided by two to obtain the reference vo1tage for the system.

The ambiguity detection circuitry corrects for + 0.5° misalignment between
the single speed and 32-speed connters, as well as deciding which electrical cycle
the 32-speed is measuring. This detection is made every fourth cycle of the
carrier frequency after both the coarse and fine angles have been measured. Detec-
tion is performed by looking at the most significant bit of the fine counter and the
decoded output of the first two bits of the coarse counter, which divides the angle
into 1.4 degree increments. After comparing these two signals (providing the
magnitude of both the coarse and fine angles} and with the receipt of the strobe
signal frem the control logic, the coarse counter is either counted up one pulse,
counted down one pulse, or remains at its present count. A1l of this results in
a correct 16 bit binary word - 6 bits in the coarse counter and 10 bits in the
fine counter, representing the resolver shaft angle with the least significant bit
equal to .00549 degree.

Sourées of analog error in the encoder have been analyzed. They include:
.o Voltage-follower gain mismatch
e . Sine/cosine cross-coupling
e A-g converter error
o Harmonic distortion
. Zero-crossihg offset
e Logic Phase Stability

The error equation for each source is listed below:

KS-K

.Gain Mismatch A8pax = T F k » Where KS, Kc are gain of sine
- s c

channel and cosine channel respectively, and the bars
denote maximum and minimum values.

For a mismatch of 5 x 10"4, an encoding error of 0.014 degrees {electrical)

results. This is reduced by 1/32 by the resolver speed ratio.

Sine/cosine cross-coupling

ﬁemax = K, where K is the fraction of signal cross-coupling.

For 66 db isolation, 0.03 degrees electrical is the error.
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I
Amplitude-to-phase Converter

= 7/6 AR » where R is the gain setting resistor

Ag R

ma
value in the converter.

For + 0.04% resistors, this amounts to 0.027 degrees, electrical.

Harmonic Distartion

max - @ where a is the relative amplitude of the harmonic

component in the resolver excitation.

AB

For 0.1% harmonic content, the error is 0.057 degrees, electrical.

Zero-Crossing Offset L o

Ag= %!—, where a¥ is the zero-crossing offset voltage and
m
Vm is the peak voltage at the zero crossing detector.

For V = + 2mv and V= 8 voits, the error is 0.014 degrees, electrical.

Logic Phase Stability

—.At 2m, where At is the differential delay of the

zero crossing detector and counter, and Te is the excitation

frequency.

For At = + 100 nanoseconds and Te = 1073 sec, the error is 0.036 degrees,

electrical.

6-118



Summar

Gain Mismatch
Cross-Coupling

A-¢ Converter
Harmonics

Z. C. Offset

Logic Phase Stability

Total, Sum
RSS

:32-speed, Sum
RSS
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.014°
.030°
.027°
.057°
.014°
.036°

,188° electrical
,081° electrical

.0056° mechanical
.0025° mechanical



6.8 DIGITAL COMPUTER ASSEMELY

This section presents the digital computer assembly functional design and
certain design tradeoff results. MNeither the design considerations nor tradeoffs
have been exhaustively investigated. Discussion focuses upon the configuration
and detailed design considerations for the central processor, memory, and memory
bus [17].

6.8.1 Configuration/Organization

The key consideration relating to design of the PPCS DCA is achieving the
required 3-5 year 1ife with high probability. Various épproaches have been taken
in the past to achieving high reliability in aerospace computers. For example,
the IBM Saturn guidance computer was separated into seven modules which then
individualiy employed TMR. Duplex memories with and without parity checks have
been widely used. The NASA OAO computer used extensive quadded-Togic while others
have rélied on distributed functions, special number systems, and careful implemen-
tation. HNone have achieved the lifetime required of the PPCS computer.

The basic difficulty in achieving long computer 1ifetimes is experienced
with the memory. Although CPU lifetimes of 100,000 hours MTBF are achievable with
LSI, no memory statistics exist for values of 1/3 of this. There is thus a basic
incompatibility in these relative lTifetimes and a varying need for redundancy across
the computer components. Ideally, the design lifetime is obtained at minimum weight
and power penalty, thus carefully partiticoning the system and applying redundancy
in keeping with the reliabiiity of each part. This, of course, leads to the
consideration of multiprocess and modular computer designs.

From reviews of the design of some multi-processors and long-life fault
tolerant computers, it appears that a good approach for the PPCS computer is to
partition the modular computer on the basis of major function and lifetime considera-
tions. This modular computer concept has the capability of greater memory repli-
cation than processor (or logic units) repiication. This is a desirable factor
as the current memory technology cannot meet the low power and high reliability of
micro-miniaturized detail logic. Furthermore, memory power tends to be high
compared to processors when implemented with higher integrated circuitry.

Techniques for redundant memories have been rare due to the difficulty inherf
ent in memory organization preventing replication at a low encugh complexity level.
One possibility is the use of redundant electronics, such as sense and drive ampli-
fiers,with non-redundant memory elements. Such an architecture involves critical
design consideration to avoid single point failures, yet allows switching or
majority employment of redundant segments. These problems have not been satisfac-
torily solved to date and there exists significant risk in adopting such approaches

for PPCS.
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Another aspect of the memory organization is a desire for read-only memory
for program storage. Plated wire memories are inherently NDRO and may be used
in this mede. However, a strict adherence to this requirement would necessitate
memory segments utilizing different techniques for RWM and ROM. Segmentation
leads to new redundancy problems due to power and reliability inequities. The
present possibilities seem iv involve employment of redundant memory moduies within
the redundant computer or the modular computer concept. These two approaches are
shown in Figure 6.48. The several advantages to independent computers include:

e Simple fast computer/memory interface
e Memory faults each to diagnose and switch within a given computer

o Initial checkout and overall concept is simple - desirable for
PPCS.

On the other hand, the modular approach has the advantage of higher relia-
bility for the same degree of replication and, hence, a Tower power and weight
penalty for the same life-time. It also lends itself well to a mixture of memory
types if reduired. Retaining high speed diagnosis of faulty memories and system
checkout become more difficult with the modular organization. Reconfiguration,
however, may not be too complex if simple power switching is employed. The ultimate
decision between these two approaches for PPCS is based upon a reliability versus
complexity tradeoff, and leads to selection of the modular redundant approach. The
PPCS DCA utilizes dual central processor units (CPU), four modular memory units
{MMU), and a dual redundant memory bus structure interfacing the CPU's, MMU's, and
Data Interface Assembly. '

6.8.2 Central Processor Design

The computational sizing indicates that the majority of the instructions re-
quired are related to arithmetic operations. Special emphasis has heen given to
this class of instruction. Special instructions such as sine, cosine, arctangent,
square root are desirable for PPCS but require a significant amount of hardware to
implement. The commonly used CORDIC algorithm for implementing these special
instructions is suited for machines with matrix shift and multiple general-purpose
registers. Since the primary driving factor for the PPCS DCA design is high relia-
bility and minimum power, it is decided that the best choice is to implement a
relatively fast muTtiply instruction instead of these special instructions in hard-
ware.

A set of double precisicn instructions is provided to facilitate programming
for accuracy required above that of the single word. It includes not only the add
and subtract instructions, but also load, store, compare, complement, absolute,

6-121



Hemory
1,]
- o
. CPU 1
. — ‘
Hemaory
1,N »
]
Hemory 3
M,1 '*“—-]_b
. N BT R
Memory | I

!"l)N

a) Independent Standby Computers

EROVY L
1
cPu 1
Memory .
2 ; .
*
L] [ ]
L]
. - CPU M
Memory

M

b) Modular Redundant Computer*

* Selected Approach:

M=2
N=4
Dual Memory Bus Structure

Figure 6-48. Candidate Digital Computer Grganizations

6-122



shift, justify and skip instructions. Double precision multiply and divide instruc-
tions are not included because they take a significant amount of hardware to imple-
ment and will not be used often. '

To facilitate program control, a complete set of unconditional, arithmetic,
and subroutine jump instructions are included. A set of input/output instructions
tailored to the data bus operation is also included. Provision is included for four
external interrupts.

6.8.2.2 Serial Versus Parallel Arithmetic

The design requiremeht for PPCS is relatively moderate in terms of processing
_speed, but very severe in terms of reliability. Therefore, it appears that serial
(or serial-parallel) arithmetic may be considered to satisfy the computaticnal speed,
and to minimize hardware required.

The speed as represented by the adder time is plotted in Figure 6-49 against
the number of bits in parallel to be handled simultaneously. Two sets of curves.
are shown, one for MOS/LSI (automated design based on Banning cells), and one for
bipolar MSI (based on TI-5400). Each set consists of three curves corresponding
to the data word lengths of 16, 24 and 32 bits. The PPCS requirements can be
implemented by use of bit-slice logic partitioning. Therefore, only one chip
design is required. The number of bits in parallel on each chip is dependent on
the technology and the function to be performed. A MOS/LSI chip can handle two to
four bits on a chip, whereas a bipolar MSI chip can handle about 25 to 50% of the
MOS/LSI chip. Therefore, the incremental cost between a serial and a parallel
implementation is the cost of additional number of chips required, but net in the
cost of additional chip design. The former is small as compared with the latter.

For a computer with the same number of instructions, the control logic is
slightly higher for serial implementation than for parallel implementation due to
additional control signals required to manipulate bits and to keep count of the bits
being handled in serial. A preliminary estimate indicated that the difference may
be approximately 20%, which tends to offset some of the hardware savings in the
arithmetic unit,

Based on these performance and implementation trades, it is concluded that
parallel implementation is preferred. '

6.8.2.3 Organization and Block Diagram

The organization of the central processing unit is modular and bus oriented.
It is partitioned for LSI implementation.f The most cost effective approach at
present is MOS/LSI 1n order to approach the reliability goal and power requirement.
The CPU block diagram is shown in Figure 6-50.
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Figure 6-49. Arithmetic Unit Design Trades
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Since the MOS/LSI circuit speeds are slow and maximum performance is required
of the processor, the normal computer arithmetic unit is replaced by two arithmetic
units. Each unit is preassigned a specific task in executing an instruction and
both work in parallel.

The Operand Arithmetic Unit (0AU) performs arithmetic and data handiing
associated with computer data. The Program Arithmetic Unit (PAU) performs similar
functions on program addresses and program control words.

The controlling of these two units in conjunction with the memory system
and Input/Output is the responsibility of the control modules or chips. These
control modules decode all of the instructions and generate the control signals
necessary for the operation of the processor. The control modules are somewhat
flexible in that the instruction repertoire can be broken up in many ways so as to
meet pin and chip size restraints.

The 0AU, besides containing an accdmu]ator and multiplier quotient register,
also requires a holding register and a second multipiier register. The latter
register is necessary in order to execute multiplication in the specified time.

In general, instruction addresses are formed on the PAU modules and sent to
the memory via the memory address lines. The instruction then appears in the
memory register and is sent via the memory output bus to the control modules and
the PAU. The appropriate control module decides if it is the destination of the
operation code. (A1l control modules look to see if they are being enabled.) The
PAU meanwhile is both sending the address of the operand and doing address modifica-
tion in case the address is to be indexed. The control module now initiates a read
memory cycle and the operand appears on the memory output bus. The appropriate
control module now directs the QAU to accept and, if necessary, manipulate this
operand in the prescribed fashion. Upon completion of the operation, the control
module initiates an instruction fetch memory cycle and the sequence continues.

The partitioning of the CPU into modules or LSI chips is directed towards
minimizing both the number and number of types of medules or chips. For exampie,
the same carry module is used in both the Operand Arithmetic Unit (0AU) and in
the Program Arithmetic Unit {PAU}. The OAU itself is made up of two bit arithmetic
unit slices, as is the PAU. This method of partition is quite flexible: the
computer word length can be modified by changing the number of OAU modules, up to
a maximum of 30-bit words. The address field may increase by adding PAU chips up
to a maximum of 16-bit address, which would directly address 65K words. The
number of index registers may be increased in 4 register increments, by adding a
set of PAU modules. Module types required for the functional CPU design (Table 6-9)
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Table 6-9, CPU LSI Modules

Module Type Rzgﬁgﬁgd
Operand Arithmetic Unit 12
Program Arithmetic Unit 7
Carry 4
PAU Control 2
Add Cantrol 1
Multiply Control 1
Shift Control 1
Jump Control 2
Program Link 2
Number Address Control 1
I/0° 2
Interrupt 1
Contingency 4

~ Total 40
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include the PAU modules, 0AU modules, and carry modules described above as well as
modules which control execution and instructions (e.g., Add type, multiply, shift,
jump, etc.)

6.8.3 Main Memory Unit Design

This section deals with the functional design of the non-volatile, random
access memory units for the PPCS DCA. Memory type, organization, and a selected
plated wire design are discussed. Ailthough it is understood that reliability in
the order of 5 years MTBF is the prime consideration, other factors which affect
memory performance must be interleaved. The factors of power, volume, speed and
cost have different weights for various applications, and each must be considered
if implementation of a most effective memory design is to be made. The factors
which most directly affect reliability are the electrical circuits, the storage
element, and the number and quality of interconnections. _ . _ _.

The two prime candidates for use as the storage element are ferrite cores and
cylindrical thin films (plated wire). Ferrite cores have been used over a sufficient
time span to enable a high confidence level for manufacturing use and in failure
rate reporting. The cores' basic construction and use in a wired stack configuration
yields failure modes which are basically dependent on wire interconnections and wire
quality unless excessive temperature extremes and vibration effects are not properly
designed for, Stock figures on reliability which may be expected are in the order
of 107 MTBF or higher. The limiting factor in core memories is the circuitry

used.

Plated wire long term reliability is highly dependent on the thin film aging
effects. Although plated wire and, in particular, thin film effects have been theo-
rized for some time, its practical application in space has been relatively new.
Most aging failure data has been obtained from accelerated aging tests. These
estimates, however reasonable for most applications, must be carefully analyzed for
high reliability or extreme environmental conditions (temperature and radiation).
As has been evidenced in programs such as Poseidon and Minuteman, all failure
aspects must be thoroughly studied.

Most plated wire reports relate 1ife expectancy to be 105 hours which is
reasonably close to the demands of a 5 year MTBF., Improvements in plated wire are
being continually made and corresponding 1life expectancy must be continually updated.
The NDRC characteristics of plated wire are highly desirable since this minimizes
the vulnerability of stored information loss due to transients and some power
failures.
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Circuitry may generally be considered the limiting factor in memory design
reliability when comparing semiconductor and monolithic I. C. components failure
rates with cores or plated wire failure rates. Typically, 15,000 hours to 30,000
hours as an MTBF may be used as an achievable figure for core or plated wires.
Plated wires use more circuitry than core memories for most general applications in
the speed ranges of 1 usec and slower.

Organization of the memory (2D, 2-1/2D, 3D) is basically determined by the
storage element used (plated wire or core}. The memory word-data bit length is
also a factor which may influence circuitry totals, each specification and product
being somewhat different and requiring a different optimum configuration.

For core memories, the overall complexity per bit (i.e., per memory element)
decreases with memory size, as a result of the higher dimensional organizations.
This is indicated in Figure 6-51 which presents a normalized reliability for _
various memory sizes where x is the reliability per bit for a given type 16K x 32-bit
memory. It is to be noted that the power requirements are configuration dependent.
An example of power requirement variations in core design is in temperature
requirement. Higher temperatures require more Tithium in core construction in
order to be more stable in output over the higher temperature ranges. This 1ithjum
core requires higher drive currents to obtain reliable core turnovers. For the
1 usec cycle time range, plated wire requires 35 uw/bit to 150 pw/bit and core
requires approximately 350 uw/bit to 600 uw/bit. Again, the volume requirements of
both plated wire and core memory are also configuration-dependent. VYolume as a
function of memory capacity and word length is shown in Figure 6-52. For plated
wire, one can achieve approximately 1000 bits/cu in, whereas for core, one can
determine an average of 800 bits/cu in.

The weight of the wire memory is comparable to that of the core memory. The
weight is also configuration-dependent. The weight of a core memory with cycle time
between 1.0 to 1.75 usec as a function of configuration is shown in Figure 6-53.

The weight is normalized by the weight of a 16K 36-bit memory.

Plated wire memories seem particularly attractive because they are designed
for non-destructive read-out. This feature has two advantages: namely, read
requires Tess power, and memaory contents can only be altered by a write operation.
For the first point, restoring data in a core memory requires about 12 times the
address current, on the average, if a 24-bit memory has half of its bits zero.
Although plated wire memories must be able to write also, and therefore must be
abie to supply such currents, writing new data is a Tess common operation: in such
a simple operation as moving a word from one memory location to another, only one-
fourth of the memory accesses involve writing new information.
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The second advantage is Tess cbvious. Read operations are quite sensitive
to noise, and in read-restore operation the mistakes are perpetuated. In a memory
which does not destroy the data as it reads, one can detect read errors and try
again; the data is still there.

It is noted that while plated wire memories are the first choice here, they
have only recently been reduced to practice. Core memory art is well established,
and is therefore a logical second choice. 1In terms of speed and reliability, core
and plated wire memories are quite similar.

A memory with a basic capability of 8,192 24-bit words of plated wire
magnetic storage is considered here. The plated wire element used as the storage
device pravides a non-destructive readout capability assuring a more reliable
restore of information as compared to destructive readout memories. The memory
system is inherently non-volatile and by design could be resistant to high levels
of nuclear radiation. A cycle time of 1 psec, with a read access time of 500 nsec
is expected.

The plated wire memory is basically organized in a linear select word-oriented
system. A multiple word readout is utilized which accesses multiple words under a
word strap. Decode at the data bit sensing selects the desired words' contents,
dropping the contents of those words not desired. The NDRO characteristics of the
plated wire element allow this procedure to be used thereby reducing the word driver
electronics compared to linear select schemes using DRO storage elements. Stacking
of eight computer words under one word strap has been used in existing designs. The
system organization is shown in the .memory block diagram, Figure 6-54, represent-
ing a single 8K-24 bit modular memory.

6.8.4 Memory Bus Design

The DCA internal memory bus will be used to connect four modular memory units
{MMU's), two central processing units (CPU's}), and provide the interface to the
two input/output units of the DIA which interface with the DCA. In order to provide
sufficient redundancy to approach the desired reliability, the computer modules are
interconnected using a pair of DCA internal buses. Each internal bus consists of
24 data and four control lines, properly terminated to avoid reflections,

The memory cycle time is 1,50 usec and access time is 0.5 usec. Thus, 750 nsec
is available for data transfer between memory and processors. There is time for only
three data transfers in the time available, and one must be used to transmit an
address in one 250 nsec period. If indexing must be accomplished without penalty,
the address plus index register select bits must be sent to the processor in the
first half of the data word. Thus, at a minimum, 15 bits must be transferred at a
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time. Thus, about two thirds of a 24-bit word would have to be sent at a time,
so it is most reasonable to have a 24-bit wide bus.

The memory in each case operates under control of external devices. It
responds to a request for a memory cycle, by sending an acknowledge signal to the
requesting external device. The external device now places an address and a read
or write command on the bus for one clock period. If the command was to read from
the memory, it reads the specified word, and places it on the bus two clock periods
later. While the data is on the bus, the memory sends another acknowledge signal
to an input/output device. The memory now begins another memory cycle.

The memory pricrity scheme is re]ativeTy.simple. A flip-flop is set each
time the memory ackncwiedges the computer, and reset when the I/0 processor uses
the memory. The rule is, if both units request memory access, the next memory
cycle will be to the opposite unit from the last.

Memory interface logic must include an address register of 13 bits, which can
be loaded from the bus, and a data register, which can be loaded from either the
bus or the memory. There is additional contreol logic for the bus.
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6.9 DATA INTERFACE ASSEMBLY

The Data Interface Assembly utilizes a data bus structure to interface to the
PPCS assemblies and other external interfaces. The DIA must perform the following
interfacing functions:

o DCA interface. Required hardware for access to memory for
reToad and telemetry. Required contrel for memory stop- .
start locations, various interrupts

e Telemetry interface. Telemetry clock read, I/0 clock write -
buffer underflow indication

¢ Command interface. Command c1ock write, I/0 c]ock read;
buffer field indication - possibly discrete command registers
for back-up modes

¢ Data bus interface. Data bus modems, address switching, parity
generation, and checking

¢ Clock function. Provides realtime clock for data bus, I/0
and possibly DCA

o Control unit. Necessary Togic for data transfer from/to DCA,
telemetry, command, data bus.

6.9.1 Data Bus Design Trades

Use of the data bus concept appears as the best choice for information
transfer within PPCS. This is dictated by the large number of signals, the centra-
lized computation,and the need for flexibility in adding or subtracting assemblies
for different missions. ‘

The data bus configuration is influenced by the carrier spacecraft layout.
In a typical user spacecraft for PPCS, there may be up to six experiments, widely
separated. If a single "threading" through these experiments is employed for the
data bus, a line length over 200 feet could easily result. Although not precluding
a data bus, this line Tength imposes limitations on the design arising from trans-
missian line considerations and the difficulty in applying redundancy. One
alternative is to use a configuration employing branches from a main bus. These
branch points, however, are difficult to design for full-duplex operation as they
must maintain impedance matching in each path. Duplex coupling techniques
include hybrid transformers and resistive pods, both of which incur weight penaities
and additional design limitations.

A second solution to the geometry problem is to use a central office approach.
A separate Tine would then emerge from the central data bus controller to each

~remote terminal. In this concept, the maximum single line length may be minimized.
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There is also an inherent reliability gain as no single failure in one line affects
another. Addressing the individual data bus terminals then takes place within the
computer interface unit, hence simplifying somewhat the remote terminal design.

In a sense, the experiments are PPCS "customers". As such, it is desirable
that a failure in one experiment or in service to one experiment, not degrade the
performance of the remainder. One way to accomp1ish this independence is to run
dedicated data bus segments to each experiment. Not only are the experiment failures
then less likely to affect the rest of PPCS, the data bus geometry is improved as
described above, and the reliability of each experiment "dedicated" communication
path is improved. '

Other considerations, however, may be dominant for the attitude reference
hardware. The hardware is all centrally located on the Reference Block Assembly,
possibly somewhat remote from the DCA. Geometrically, a single data bus serving all
these units is indicated. Independence is not as serious here in that loss of any
one of these units is serious (or catastrophic) to the total system performance.
This selected approach is shown in Figure 6-55 where each line is a half-duplex
data bus.

The prime considerations of data bus design in PPCS are reliability and cost.
‘Reliability refers to ability of the data signal to be received without error at
its destination. Cost includes not only direct costs, but the effects of power,
weight, and life. Table 6-10 summarizes the key parameters, basic considerations
and PPCS decisions. The decisions are interrelated. Once a twisted shielded pair
is chosen, transformer coupling is a natural to take advantage of the balance and
high common mode noise rejection obtainable. Manchester code then aveoids a DC
signal component and gives a transition each cycle. This, in turn, allows for
single cable distribution. The use of transfer coupling has the advantage of
npoise isolation but the disadvantage of high power requirement. Therefore, direct
coupling may also be considered.

6.9.2 Interface Control Design

6.9.2.1 Configuration Tradeoffs

Three different conceptual designs have been studied and evaluated for the
input/output control function. These are: (1) 1/0 controller with a fixed (hard-
wired) program, (2} I/0 control directed by the computer, (3) independent I1/0
processor with shared memory. The third approach with an independent I/0 processor
is selected since its complexity is similar to the computer directed I/0 controlled
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Table 6-10.

Data Bus Design Trades

Design Major Dasign Selection
Parameters Candidates Considerations and Rationales
Transmission Twisted Shielded Pair Adequate Bandwidth Twisted Shielded Pair
Media Coaxial Cable Minimum Attenuation Balanced Transmission
Simplie Coupling High Noise Immunity
Noise Immunity Sufficient Bandwidth
- Physical Consideration Good Physical Characteristics
Simple Coupling
Multiplexing/ | Baseband Data Rate Reguirements Digital Time Division Multiplexing
Modulation Carrier Hardware Complexity High Noise Immunity
TDM Communication Efficiency Simple Synchronization
FDM Bit Error Performances Digital Circuitry and LSI
Hybrid Synchronization
Signal Manchester AC/DC Coupling Manchester
Design HRZ/RZ DC Synchronization No DC Component
Pair Selected Ternary Bandwidth Moderate Terminal Complexity
Bipolar Terminal Design Good Noise Immunity
Clock can be Derived from Data
Data Syn- Separate Clock Line Terminal Complexity Single Line

chronization

Coupling

Derive from Siganl

Balanced Transformer Coupled
Single-Ended Coupled
Probe Coupling

Interconnection Complexity
Clock Skew
Response Time

Type of Transmission Media
floise Rejection

Increased Propagation Delay
DC Isolation

Loading

Minimum Terminal Hardware
o Clock Skew
Lower Cable Weight

Batanced Transformer Coupling
Good Isolation Capability
Minimal Loading
High Common Mode Rejection




design, but it requires significantly less management by the computer. It is much
more flexible than the fixed hardwired processor, which also has a minimum of
computer management. Each of these conceptual designs is described briefly in the
following paragraphs.

Conceptual design for a fixed (hardwired) 1/0 controller implies:

a)
b)

c)

d)

f)

gl

h)

A11 commands to the data bus are generated by the I/0 processor
logic. :

The I/0 processor consists in effect of a large multiplexer, with
sub-multiplexers for items that need noi he sampled at high rates,

Storage locations for data transferred by the data bus are fixed by
the logic, and may not be changed.

In backup mode, data will be sent over the telemetry link for
ground processing.

In normal mode, the telemetry unit will get data from the
computer, a block at a time.

Commands on the data bus can change the 1/0 processor mode of

operation, and transfer of data from the bus to memory, or to
telemetry, or both.

Commands can be used to store information in any memory location,
cormmand computers or I/0 processors on or off, memaries on or off,
et cetera.

It will be possible to send single commands on the uplink to the
data bus, and receive a response on the telemetry link.

Conceptual design for a computer directed I/0 controller implies:

a)

b)

c)

e)

f)

Commands are sent from the computer to the data bus by computer
command.

Before sending each command to the data bus, the computer must
send an input or output instruction to the 1/0 processor, or tell
it where to put the incoming data.

At the end of each such data transfer, the computer receives an
interrupt from the I/0 processor,

A backup mode can be arranged which substitutes a read-only
memory for the computer command. In this case, it is assumed that
data will be sent via telemetry to the ground.

In normal mode, the telemetry unit will get data from the computer,
or read it from a dedicated area in memory.

It shall be possibie to send commands directly from the uplink to
the data bus, and receive responses on the telemetry link.
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The selected conceptual design for an independent I1/0 controller implies:

a) 1/0 processor takes instruction from memory. Each instruction
specifies an input/output operation, or location of another
instruction.

b) Each input/output instruction references a memory location
which contains the command word for transmission by the data
bus. The locations following this word will contain the data
to be sent, or be reserved for the data being received.

¢) Processor takes instructions starting at a standard location. An
external timing signal is used to control the start of input/
output. :

d) Several backup modes are possible in this design. The first
of these is to use a memory to program the I/0 processor, but
deliver any outputs to the telemetry link. Another possibility
is to use a read-only memory as a source of input/output and other
instructions. :

e) In normal mode, it is assumed that the telemetry unit will get
data from the dedicated area in memory, which it would read in
cyclic fashion.

£) It should be possible to send commands directly from the uplink
to the data bus, and receive responses on the telemetry Tlink.

6.9.2.2 Block Diagram -
The DIA block diagram is shown in Figure 6-56. The interfaces are summarized
below:

¢ Memory bus interface - compatible with the DCA memory bus
design.

e Data bus - multiples of 1 message must be sent or received,
or both. One message may require processing up to 36 bytes
“data bus clock 500 KHz.

o Telemetry - telemetry is assumed to be supplied on a demand
basis, at a rate not to exceed 10 KHz

® Commands - It is assumed that the command input rate will not
exceed 2 KHz,

The DIA is designed so as to be controlled directly from a program stored in
memory. A dedicated memory area is used for input/output, containing a mixture of
DIA instruction words and data. The CPU loads data into appropriate locations and
may modify the DIA program when necessary due to failures or system mode changes.
A dedicated memory location must be continually monitored by the DIA when 1d1e;
awaiting contral by the CPU..
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In addition, the DIA will be corntrollable by a Read-Only Memory (ROM) for use
in failure modes. The ROM will contain a fixed instruction program to allow data bus
operation, telemetry and command operation.

6.9.2.3 DIA Qperation

The normal mode of operation is where all DIA processing is performed under
control of the CPU via the memory. There are three basic areas of memory:
e Data bus contrel. This memory segment contains the "idle"
location and certain other small programs needed to fetch
data. One such program is the minor cycle data gathering

which is a fixed cycle of data bus addresses and the
associated Tocations for storage.

e Telemetry control. The PPCS telemetry format is stored in
this area in a sequence of DIA instructions. Locations
-are provided for all current data. The CPU, in its normal
pr?cessing, keeps these locations refreshed with the latest
values. ‘

¢ Command control. This sequence of memory locations contains
the sequential commands as received. In some cases the CPU
simply places these into the data bus area, while others may
result in a number of data bus commands.

To accomplish Joading of memory locations for targeting. alteration of star
tables, and entering of other constants, use is made of the command channel. This
data is stored in the command control area. The normal command servicing routine
of the CPU recognizes this data as memory load. Checks may then be performed for
data validity and the data shuffled to the commanded Jocations by the CPU. This
approach to memory reload simplifies the DIA implementation and memory protection
problem.

Certain discrete commands are distinguished by the DIA deviating it from the
normal mode. One of these engages the ROM which provides a backup program. In
this mode a fixed data bus format is carried out and the resulting data placed on
telemetry. Commands are acted upon jumediately and transmitted on the data bus.
Thus, the main memory and CPU are bypassed entirely while the DIA is in this mode.

6.9.2.4 Data Bus Processing

At the end of all data bus traffic, control returns to an "idle" location in
main memory. When the CPU wants to send or receive data via the data bus, it
stores an appropriate instruction in this location branching the DIA to the appro-
priate routine. '
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When data is transmitted on the data bus, switching is performed dependent
on the address. DIA control switches to the appropriate EEA or to the PPCS data
bus and its associated modem. The modem function includes parity generation and
synchronization for the data bus.

For data coming into the computer from the data bus, the switching is still
set up from the immediately preceding "REQUEST" message. Parity is checked in the
modem. Upon detection of a parity error, the DIA shall store its program address
in a dedicated main memory location and interrupt the CPU. After a specified
pause, the DIA control continues with its operation taking its next instruction
from a location specified in the dedicated memory location.

The memory Tocation for storage must be maintained in the control unit,
as specified by the previous instruction.

The control unit of the DIA monitors the status of the DIA and directs data
accordingly through direct control of the data exchange register. Eachrmemory -
request s initiated by the control unit and the response monitored to distinguish
data from instructions. The latter words are decoded and the contro] unit logic
set up to perform this action.

Memory address registers are provided in the control unit for command,
telemetry, and data bus control. Incrementing of each is handled separately,

The ROM provides the entire DIA program in the backup mode when directed by
discrete commands via the command control logic.

6.9.2.5 Command and Telemetry Processing

It is assumed that commands will have the same format as data bus words,
1.e., each command message will be in bytes with a parity bit on each byte and a
longitudinal parity byte on the whole message. Each command will be checked for
parity before execution. Most commands for PPCS will be destined for main memory
where they will be acted upon by the CPU. The DIA must also accept some discrete
commands which provide a PPCS command path external to the CPU. The PPCS command
format will consist of an address consistent with the data bus format. This simpli-
fies the CPU processing required and provides some failure immunity. The command
portion of the DIA must contain a register large enough to hold a command plus its
address. These must be buffered to resolve conflicts on the memory bus and data
exchange register. The control logic will provide priority for the commands within
the DIA over data bus and telemetry. A buffer fullness indicator is not required
to the CIA control due to this precedence.
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The command control provides logic to gate the asynchronous command bits into
and out of the command buffer. There is also an interrupt from the pIA to the CPU
indicating the presence of new command data. This interrupt is set upon receipt
of each Tongitudinal parity.

The telemetry system operates asynchronously to the PPCS. Hence the telemetry
unit in the DIA must request more data when its buffer is nearing empty. Data is
clocked out of the buffer by telemetry clock and in by the DIA clock. The necessary
synchronization is performed by the telemetry control unit. A "buffer low" signal
tells the DIA control to access new data from memory. In this way, the DIA can
continually service telemetry without any CPU intervention at all.

Under normal operation, the telemetry unit has immediate precedence in the
DIA above data bus and below commands. In the backup mode, the telemetry input
comes directly from the data bus, through the data exchange register, under contraol
of the ROM program.

6.9.3 Data Bus/Data Interface Unit Design

Data Interface Units (termina]s) will interface between the data bus and user
equipment to provide data selection and formatting. The DIU's will provide D/A and
A/D conversion, analog multiplexing and digita] multiplexing. The relatively low
data rates suggest twisted, shielded pair lines. The higher data rates achievable
with coax are not needed for PPCS. Transformer coupling of data on/off the bus
will solve grounding and failure isolation probiems.

A separate clock line will be provided; the interface controller will clock
all communication. This approach is simpler {hardware) than modulating the data
1ine. The clock coding on the line hasn't been selected; Bi-Phase coding is most
1ikely to keep a narrow bandwidth signal. The clock will change form to indicate .
the start of a message.

The low data rates suggest time division multiplexing, which is again simpler
to mechanize. Again Bi-Phase coding will probably be used. A1l communication is
initiated by the interface controller; remote units recognize the "start message"
sync (clock 1ine), check for their address on the data line, and either receive the
data or provide the requested information. As a minimum, the addressed unit returns
a "message received" word back. The data rates permit cycling through all assemblies
and all data inputs sufficiently often that alarms, etc., will be picked up soon
enough, thus no remote terminal interrupts are planned.

Selection of a standard word size is a compromise between specific user needs
and the desire for commonality of equipment. PPCS typically requires long words
(10-22 bits), while many other users need shorter words. A standard word of 8 bits +
parity has been selected. Longer words will use multiple word slots.
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The functional operation of the DIU is illustrated by reference to Figure
6-57. Various configurations of DIU's containing different numbers of digital and
analog channels are being considered. Probably more than one configuration will
be available to allow some flexibility for optimization.

The DIU address is 6 bits and can therefore select one of 64 DIU's. Two
bits used as part of the function code and a word parity bit fil1l out the 9 bits in
the address word. The function code consists of 5 bits {2 from the address word)
coded to tell how many data words are in the message or how many data words are
being requested. The 5 remaining bits contain the channel address where the first
~data word goes/comes from. A parity bit fills this word. The data words (0-7) have
8 bits of data and a parity bit. The last bit in the message is a vertical parity
word with the first parity bit associated with bit one in each word, the second
parity bit associated with each bit number twa, etc.

The DIU to computer message starts by repeating the DIU address (6 bits), has
two spare bits and a parity bit. Data follows in 8 bit + parity words. A vertical
parity is generated as described for the computer message.

When a sync signal is detected on the clock line, each DIU compares the in-
coming address word to its internally stored address. If a match exists, the last
two bits and the next word is shifted into the Function Code Register. The first
5 bits into the Function Code Register are loaded into the Channel Address Status
Counter and the next 5 into the Channel Address Counter. The first Channel Address
is decoded and the first data word {if any) is shifted serially into a register.
The status counter is then decremented, the address counter incremented, and the
next word shifted into another register. This proceeds until the status counter
zeros. At message end, parity is verified, and, if correct, a "message received"
format is returned. The stored data is then enabled to the output registers. Both
parallet and serial outputs are planned. Data placed in registers designated as
D/A storage is sequentially routed through the D/A converter and the resulting
analeg voltage stored in hold circuits.

If the incoming message had been a data request, the initial sequence would
be the same. The addresses would be either the digital select matrix or the analog
multiplexer. The selected data is placed cn the bus behind the DIU address, and
sequencing proceeds as before until the regquested number of data words has been
sent. Operating data rate is 250 KHz.
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7.0 SOFTWARE DESIGN

The PPCS software block diagram is shown in Figure 7-1, incorporating both
the on-board and ground processing {the latter shown here only for identification
of interfaces). Two basic cétegories of on-board software are considered, namely:
Application Software, i.e., that required for the specific implementation of PPCS
functional/operational algorithms (Blocks 2X, 3X); and Executive software, i.e.,
that which is most strongly related to basic implementation of the data processing
functions and maintenance of the appropriate operating configuration/environment
(Block 1X). A modular approach to software organization is used in order to achieve
overall cost-effectiveness with regard to software development. Individual software
modules are defined to handle specific functional requirements. This approach
allows the work to be conveniently segmented for detailed prograh design, facili-
tates ease of checkout, and isolates executive functions from the functional ceding.

The Executive sdftware is presented initially, and includes discussion of the
program control approaches/tradecffs, considerations related to defining program
modules, definition of program flow, and a brief discussion of the Executive soft-
ware modules. The Application software discussion focuses in some detail on the
design of each module to the level of equation definition and flow. Preliminary
generic coding of the software was conducted to determine the computational require-
ments, and this is sumnarized in the final section. '

7.1  EXECUTIVE SOFTWARE

Executive software is a generic term used in the present context to include
the functions of program execution, interface management, and configuration con-
trol. The principal functions of the Executive software are thus defined as:

e To schedule all of the software tasks that are pertinent to a particular

mission phase.

@ Assure that each task is executed in real time at an individual defined
rate .

e Perform or coordinate all input/output operations so that data is
available to the individual software modules as it is needed.

¢ Respond to asynchronous demands related to ground commands and system
reconfiguration within the appropriate time limitations.

Handle computer initialization, program loading., and ground update.
Interface with the telemetry and command.

Provide for computer and data interface self-test.

Provide for system monitor and test.
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7.1.1 Program Control/Execution

The program control executive routine is that portion of the operational pro-
gram which controls the execution of the individual functions of the program and
allocates the resources of the computer system to accommodate the performance of
these tasks within the real time constraints of the system, It is the governing
software which lends an organization to the execution of the overall program.

Executive software organizations can be described as being either synchronous
or asynchronous. The synchronous executive concept divides time into a number of
segments. These segments are assigned specific computational tasks and the tist of
slots is continuously recycled to create a real time system. This is a very orderly
organization, with the same computations always being executed in the same time
segments. Various computational rates within the total 1bop can be established by
creating inner Toops within the basic Toop. An asynchronous executive is primarily
based on the utilization of external interrupts. It is motivated by real time
demands imposed by the external devices, and is characterized by interrupted compu-
tations and priority task tables. '

The two concepts described actually constitute the terminal points of a con-
tinuous spectrum of executive organizations. The executive system defined for PPCS
is between these two extremities, but leans toward the synchronous concept. The
synchronous executive has as its greatest attiribute its simplicity and well defined
behavior. This simplifies the checkout and verification task. On the other hand,
the asynchronous executive is more responsive to non-anticipated real-time demands.
Since the PPCS operation is well defined and since no stringent requirement is
placed on real-time responsiveness, an executive software which is basically syn-
chronocus in nature is selected.

The PPCS program control executive routine is organized using a synchronized
major cycTe/minor cycle concept as shown in Figure 7-2. The minor cycle contains
all of the high speed computations, and is executed every 200 milliseconds. The
major c¢cycle contains those computational functions which are performed at a slower
rate, segmented in such a fashion that some system flexibility is available on a
program controlled priority basis. Note that there are no external interrupts re-
quired for the PPCS- data processing system. Internally, however, there are several
interrupts associated with program execution control. One, the real-time clock,
controls initiation of the minor'cyc1e. At Teast two others are associated with
the data interface, including the "conmmand data received" and the "data bus error
detected" signals. Depending'upon the exact memory design, memory parity errors
may also cause an interrupt. Other interrupts which exist within the computer
include power transient monitors, overflow indicators, etc. Among the most important

of these is the "Reset" interrupt which is used to initialize and start the computer

at a known memory location.
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The extent to which modularity is employed, coupled with the definition of
module boundary conditions, have a strong influence on executive software require-
ments. Since the executive must provide software module interface linkage and
argument transfers, the following considerations and constraints are invoked so as
not to seriousiy complicate the executive requirements with relation to the modu-
larity concept:

¢ The number of defined modules which are not placed in sequence must be

consistent with the executive software ability to provide linkages.

That is, the degree of modularity should be constrained so as not to
severely complicate the structure of the executive software.

¢ Fach software module must have a meaningful functional responsibility to
facilitate analysis, modification, and intelligent assignment of program
design responsibilities.

® Each module must be defined so that its execution time is in accordance
with the time constraints established by the executive software. The
module must be compatible with the time aliocations for minor cycle and
major cycle segments as established for & synchronous executive concept.

o Each software module should be capable of existing by itseif so that
boundaries can be identified. The boundaries are needed so that the
module can be a physical entity.

e It is desirable that all modules be comp]ete with regards to input/output
requirements. '

e It is desirable to minimize the setup and argument transfer requirements.
Excessive setup penalizes modularity in terms of execution time and
memory usage.

Definition of the software flow and modularity is shown in Figure 7-3.

7.1.2 Data Bus Control

The data bus control sofiware controls the initiaiization of the minor cycle
data transfer for application software and major cycle data transfer for system
test., This software module performs the I/Q initialization, data transfer execu-
tion, input/output command chaining, data buffer allocation, and data buffer moni-
toring. The initialization of a chain of I/0 commands is done by the DCA. Once
the chain of I/0 commands is initialized, the DIA will take over from the DCA.

The DIA will execute one 1/U command at a time until the command buffer is empty.
Then the DIA will interrupt the DCA. Each I/0 command may execute an input data
transfer or an output data transfer from or to an assembly. The buffer control is
preferred by the DIA and the length of the buffer is variable and under program
control.

7.1.3 Command Processing

The command processing shouid be initiated by an interrupt or discrete from
the command decoder. This routine will interpret the message from the ground. The
routine will then initiate the requested action. A Targe number of such actions

will result in a large complex command 1ink routine.
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7.1.4 Telemetry Processing :

This software module will format and initiate the telemetry transmission on
command. The telemetered data wi1l be divided into two categories. The first
category will be scientific data describing the normal operating modes. The second
category will be diagnostic data requested by the ground over the command link.

7.1.5 Self-Test/System Test

This diagnostic capability will be divided into two parts: 1) a series of
G0-NO-GO checks, and 2) provide diagnostic data to the ground. The GO-NO-GO checks
will merely determine if a specific element is operating correctly. For elements
of extreme importance, a message will be immediately transmitted to the ground. In
addition, certain specified diagnostic information may be sent to the ground on

- command.

A number of failure detection modes for the DCA are ava11ab1e These include
the CPU self-test timer, memory parity, power transient monitors and data bus error
detection. The basic philosophy of the fault detection scheme is to quickly bring

~ground attention to bear upon a fault {or possible fault) and to aid in its diagnosis.
A basic tool is thus the telemetry format and the information contained therein.
‘Some of the potential diagnostic tools used for the DCA/DIA are:
o Zero sum memory checks performed on program and other constant storage

areas during self-test periods. Intermediate computations periodically
transmitted via telemetry grouped so as to allow reasonableness checks.

o Self-test performed on minor cycle and major cycle basis, A1l instructions
and registers exercised with diagnostic results stored and telemetered.
Zero sum checks and other memory checks also monitor CPU.

e The data bus is checked by periodically sending data values to be D/A
converted and returned to the CPU for checking. This is a partial check
on DIA operation. Commands may also be sent from the ground which are
turned around and telemetered for comparison.

Usua1 action in the case of a failure in the DCA/DIA is to switch (by ground
command) the offending unit off and bring power on to a spare. The command decoding
and power switching are performed in a system associated with the command unit. In
some cases the action may be to change the locations of certain routines in memory
(not the main program, however). In this way, particular memory faults may be

avoided by never accessing particular locations.

A major failure usually requires restart. The restart sequence must be such
that the PPCS system may bootstrap into proper operation from any conceivable failure
mode. Provision for this is in the initialization routine which is entered via the
restart interrupt. This interrupt necessarily is decoded either within the command
system, or in the command control unit of the DIA.



Faults within other PPCS units are detected primarily through software monitors.
These include Timit checks on voltages, temperatures, etc.; reasonableness checks
on certain data such as gimbal angles and angular rates; and results of computations
such as gyro rates. These monitors are telemetered and ground action is implemented
via the command subsystem. Diagnosis of failures are nominally performed on the
ground.

7.2 APPLICATION SOFTWARE

The application software modules provide those operations to measure and
establish the required attitude reference(s) (Block 2X) and to implement the point-
ing control operations for the experiment platform and antenna (Block 3X). These
functions are briefly reviewed, with reference to the detailed application software
block diagram of Figure 7-4 . The short-term inertial attitude reference is pro-
vided by processing of gyro data {Block 21). Periodic updating of attitude is pro-
vided by using star tracker data (Block-22) and employing filtering techniques to
bound the gyro drift effects (Block 23). Star selection and control of the star
tracker(s) is included within Block 22. Attitude reference between the primary
inertial reference and remote platforms is provided by processing alignment sensor
data (Block 24}. In addition, attitude reference relative to the local vertical is
established through knowiedge of the ephemeris and appropriate transformation of
the inertial reference (Block 25}. Targeting (Block 31} is based upon ground
generated stored data, resulting in target vectors. The steering equations yield
~gimbal angle and/or rate commands associated with the platform(s) or antenna to be
pointed based upon the targeting inputs (Block 32).

7.2.1 Gyro Reference {Block 21)

The function of this module is to take the information from the gyros in the
form of pulse counts as inputs and derive as an output the inertial attitude of the
primary attitude determination reference frame with respect to ECI coordinates.

The functional block diagram for this module is shown in Figure 7-5 . The functions
which take place are:

¢ {(onvert pulse counts to angle change, derive rate, and transform rate
from the gyro to body coordinate frame {Block 211}

o Compensate for gyro error sources (e.g., drift bias, input axis align-
ment, and scale factor) {Block 211)

¢ Maintain precise short-term reference by integrating gyro data (Block 212)

o Compute elements of direction cosine matrix relating attitude to ECI
{Block 213)

The required algorithms are summarized in Figure 7-6, where the equations shown
are taken from the derivation of Section 3.0.
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7.2.2 Star Reference (Block 22)

The function of this module is to provide selection of target stars, compute
tracker gimbal commands during slew and star search, compute the estimate of the
STA star measurement, and compute the difference between the observed STA measure-
ment and the estimated value. The functional block diagram for this module is
shown in Figure 7-7 . The functions which take place are:

o Establish star selection/availability (Block 221)
Compute aberration correction (Block 221)

# Compute nominal STA gimbal angles and provide STA command/control
as appropriate (Block 222)

o . Compute estimated STA star measurement (Block 223)
e Determine observed STA star measurement (Block 223)
e Compute difference between observed and estimated STA star
measurement, i.e., measurement residual {Block 223)
The required algorithms are summarized in Figure 7-8 , where the equations
shown are taken from the derivation of Section 3.0.

7.2.3 Filter/Update Reference (Block 23)

The function of this module is to maintain precise long-term attitude refer-
ence via updates of the system state using star tracker data implemented through a
Kalman filter. The block diagram of this module is shown in Figure 7-9 . The
following functions are included:

e Propagation of the state transition matrix is performed each minor

cycle using gyro derived data (Block 231). The matrix is re-initialized
following each filter update.

e The covariance matrix is propagated from the previous observation
time to the current observation time using the state transition matrix
{Block 232).

¢ The gradient matrix of sensitivities of observables relative to
parameters being estimated (i.e., the measurement matrix) is computed
{Block 233).

¢ The filter (optimum gain) weighting matrix is computed using the
Kalman filter equations (Block 234?.

¢ The covariance matrix is updated to reflect reduced uncertainty
after an observation has been processed (Block 235).

e Corrections to the Euler parameter and drift bias pavameters are
computed using the weighting matrix and the measurement residuals,
and the parameters updated (Block 236).

The required algorithms are summarized in Figure 7-10, where the equations
shown are taken from the derivation of Section 3.0.
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Algorithms/Flow for Filter/Update (Blocks 232-233)
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7.2.4 Alignment Reference (Block 24}

The function of this module is to establish a precision reference for up to
six remote platforms using the alignment sensor measurements. The block diagram
of this module is shown in Figure 7-11. The following functions are performed:

® Measure autocollimator outputs and correct for known errors (Block 241)

¢ Compute elements of direction cosine matrix relating orientation of
remote reference to alignment instrument reference (Block 241)

¢ Compute elements of direction cosine matrix relating orientation of
remote reference to attitude determination reference {Block 242).

The required algorithms are summarized in Figure 7-12, where the equations
shown are taken from the derivation of Section 3.0.

7.2.5 Heading Reference (Block 25)

The function of this module is to establish a precision continuous local
vertical/orbit plane reference. The block diagram of this module is shown in
Figure 7-13. The functions performed include:

e Computation of real-time estimate of spacecraft ephemeris (i.e.,

position and velocity) in inertial coordinate (ECI) (Block 251).
Note: The means to perform this function have been specifically

excluded from PPCS design considerations. This computation is
included for completeness only in the present context.

o Compute elements of the transformation matrix from inertial (ECI)
- coordinate to local vertical/orbit plane coordinates (Block 252).

¢ Compute elements of the transformation matrix from the Tocal
vertical/orbit plane frame to the attitude determination frame
(Block 252).

o Compute spacecraft attitude and rate relative to the local vertical
coordinate frame (Block 253).

The required algorithms are summarized in Figure 7-14, where the equations
shown are taken from the derivation of Section 3.0.
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Figure 7-11. Functional Block Diagram, Block 24
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7.2.6 Targeting {Block 31}

The function of this module is to establish the target vectors for the experi-
ment platforms and antenna. Target coordinates are operated upon to determine
target vectors defined from the spacecraft to the target in gimbal base coordinates.

The block diagram of this module is shown in Figure 7-15. The functions include:
o Experiment target selection and platform allocation (Block 311)

e Compute elements of target vectors w/r ECI frame (Blocks 312, 313)
e Compute target coordinates in nominal gimbal base axes (Block 314)
’

Data relay satellite selection and computation of relay satellite
ephemeris (Block 315)

e [Establish data relay satellite target vector {Block 316).

The required a1gor1thms are summarized in Figure 7-16, where the equations
shown are taken from the derivation of Section 3.0.

7.2.7 Steering (Block 32)

The function of this module is to establish the steering commands for the
experiment platforms and antenna. The block diagram of this module is shown in
Figure 7-17. The functions to be performed include:

e Compute experiment platform gimbal angle and rate commands
e Compute antenna gimbal angle and rate commands

The required algorithms are summarized in Figure 7-18, where the equations
shown are taken from the derivation of Section 3.0.

7.2.8 Data Base

The data base is comprised of initial constants and data values in natural
engineering units. This data is stored prior to launch and can be updated by the
~ground. Included are ephemeris data, star catalog, target data, and calibra-
tion/compensation parameters.

o Ephemeris - Data from which to compute the spacecraft ephemeris must
be available on-board at ali times.

e Star Catalog - The star catalog stores the ECI coordinates of the
stars employed for attitude determination. Since the total number
of stars employed will not be excessive, the entire catalog may be
committed to memory (as opposed to including only "available" stars,
with occasional updating as the geometry changes{.

e Target Data - Data for experiment pointing and antenna pointing
requires storage. Time-tagged target coordinates (latitude,
longitude, radius) will be stored for experiment pointing, and
ephemeris data for three data-relay satellites will be stored
for antenna pointing.

¢ Calibration parameters - Storage is required for parameters
updated from the ground,
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7.3 COMPUTATIONAL REQUIREMENTS

'iThe PPCS'computationa1 requirements were developed by sizing the memory and
speed for the functions and algorithms presented in the preceding section. Basic
to this sizing and timing analysis are a number of assumptions, namely:

# Word length assumed adequate to perform all computations in
single precision

¢ An instruction repertoire sufficiently flexible and sophisticated
to execute given functions with a minimum of instructions.

e No penalty in timing for 1ndexing.
e Use of the following instruction speed equivalents:

1 multiply = 8 add times
1 divide = 18 add times

o All instructions other than multiply and divide are assumed to
have execution times equal to an add time. .

e Use of subroutines for mathematical functions, e.g., matrix
operations, sine-cosine; square root, etc. Each subroutine
call is assumed to take 7 instructions.

7.3.1 Memory Sizing

The memory storage requirements for instructions and data were determined.
Size was computed for the application program modules through trial programming.
Estimates were made for the executive program modules based upon assumed mission
characteristics and past experience. Table 7-1 shows the memory requirements, which
indicate a memory capacity of 8K words (PPCS DPA configuration) provides a 45%
growth margin (excluding ephemeris).

7.3.2 Computational Rates

Table 7-2 summarizes the computational rates for the application program
modules. For each module, the critical path was determined and used to obtain a
conservative result. The number of instructions per execution is determined from

“the number of add, multiply, and divide operations. The frequency of execution is
how many times per second the module is executed, and the (equivalent add) instruc-
t{ohs per second is determinéd from multiplying the number of executed instructions
by the frequency. The final total of approximately 160,000 instructions per second
would require a machine with an add time of less than 4 microseconds, excluding the
executive functions, to achieve a duty cycle of approximately 60% for the assumed
instruction speed ratio. '
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Table 7-1.

Memory Size Requirements

Element

Program (Words)

Data (Words)

Executive Modules

Program Contro]l

Data Bus Control
Command Processing
Telemetry Processing
Self-Test

System Test

Application Modules

Gyro Reference

Star Reference
Filter/Update
Alignment Reference
Heading Reference
Targeting

Steering-

Subroutines

Data Base

Star Catalog

300
100
200
300
300
200

1400 (Estimate)

185
334
820
118
265
201
451

2374

375

300 (Estimate)

72
113
110

42

63

42

81

523

150

Ephemeris Not Evaluated

Target Data 500 (Estimate,
Typica])

TOTAL 4148 1473
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Table 7-2. Computational Rates

Farctioaaute | My of Instructions [ Freqeney of | {psiructior
Gyro Reference 624A + 70M + 15D (= 1454A) 5/sec 7270A
Star Reference 33A + 384 + 2D (= 373A) 1/sec 373A
State Transition Matrix| 457 + 64M + 3D (= 1023A) 5/sec 51154
Filter/Update 3340A + 470M + 10D (= 7280A} 1/30 sec 2434
Alignment Reference  |848A + 118M + 6D (= 1900A) | 6x6/sect!) |  57000A
Heading Reference 607A + 82M + 10D (= 1437A) 5/sec 71854
Targeting 460A + 46M + 6D (= 946A) 6x5/sec(1) 28380A
Steering 735A + 90M + 18D (= 1779A) 6x5/sec(]) 53370A

{1 Six independent experiments assumed.
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8.0  NEW TECHNOLOGY
8.1 KALMAN FILTER STATE VECTOR FORMULATION

The Kalman filter devised for the PPCS attitude determination simulation
employs a unique formulation of the state vector. An array of system parameters are
available from which the user may construct the desired state vector at the time of
data input. For ekamp]e, selected gyro and/for star tracker misalignments and biases
may be specified to be treated as state elements in addition to attitude. Thus, in
the simplest case, the filter operates only upon the three attitude variables; in
. the most complex, up to 25 additional system parameters can be adjoined to the
attitude in forming the filter state. Consequently, the algorithm has application
in the determination of in-flight performance in which case only six states are
employed; and secondly, this algorithm can be used as a ground based calibration
filter employing many more states. The techniques devised to achieve such simula-
tion flexibility are not unique to the PPCS application, but could be utilized in
any application that includes constant and observable parameters as candidates for
estimation,

8.2 ERROR ANALYSIS

The error analysis developed for PPCS is a unique approach for studying errors
of a complex system which includes a Kalman filter. Direct addition of the error
variances is not applicable since the error analysis has to handle sophisticated
error models which are state dependent. A new approach which did not resort to a
simulation was devised. The approach is to perform a sensitivity analysis establish-
ing the sensitivity of the attitude determination system and the pointing angles to
the system error sources. The sensitivity matrices provide then the appropriate
weighting of the system error sources when the attitude determination and pointing
errors are established.

Since the individual system errors are not linearly related to the attitude
determination errors and the pointing errors, the derived sensitivity matrices
consist of partial derivatives evaluated at the nominal, current system state.

The error model, therefore, becomes automatically a function of the state of the
system (very realistic) and state dependent error models for the individual system
errors can now also be easily handled. By selecting some suitable system states
one can either obtain typical total system errors, or study the changes in the
total system error as a function of the state.

The Kalman filter which is an important component in the attitude determiha-
tion software, is handled implicitly rather than explicitly in this approach: The
variances of those error quantities which are estimated by the on-board filter are
attenuated by the ratio of their a posteriori to a priori variance as determined
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by the filter in the existing (separate) dynamic simulations. Observation noise
is also attenuated. _

The main advantages of this approach to the error'ana]ysis are:

(1) It is very realistic but requires no detailed dynamic
simulation.

{(2) The sensitivity matrices indicate which error sources hurt the
system performance the most and where it is therefore most
worthwhile to improve the system, ‘ '

(3) State dependence of the total system errors can be studied and
state dependence of individual error sources can be modeled.

(4) Because of item {3), the error analysis can be used to study
the effects of increasing or decreasing the time between
star tracker attitude updates. The effects of star location
on the accuracy of the system can also be studied
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